So Many Variables: Joint Modeling in Community Ecology.

[1]  Ernst Wit,et al.  Copula Gaussian graphical models with penalized ascent Monte Carlo EM algorithm , 2015 .

[2]  Francis K. C. Hui,et al.  Fine‐scale hydrological niche differentiation through the lens of multi‐species co‐occurrence models , 2015 .

[3]  Patrick Hostert,et al.  Mapping beta diversity from space: Sparse Generalised Dissimilarity Modelling (SGDM) for analysing high‐dimensional data , 2015 .

[4]  Miguel G. Matias,et al.  Inferring biotic interactions from proxies. , 2015, Trends in ecology & evolution.

[5]  W. Jetz,et al.  Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. , 2015, Ecology letters.

[6]  Hans J. Skaug,et al.  Spatial factor analysis: a new tool for estimating joint species distributions and correlations in species range , 2015 .

[7]  R. Schäfer,et al.  Ecotoxicology is not normal , 2015, Environmental Science and Pollution Research.

[8]  Eddie J. B. van Etten,et al.  A continental‐scale analysis of feral cat diet in Australia , 2015 .

[9]  G. De’ath,et al.  Model-based thinking for community ecology , 2015, Plant Ecology.

[10]  Sara Taskinen,et al.  Model‐based approaches to unconstrained ordination , 2015 .

[11]  David J. Harris Generating realistic assemblages with a joint species distribution model , 2015 .

[12]  S. Walker Indirect gradient analysis by Markov-chain Monte Carlo , 2015, Plant Ecology.

[13]  Torsten Hothorn,et al.  Spatio‐phylogenetic multispecies distribution models , 2015 .

[14]  Douglas W. Yu,et al.  Selective‐logging and oil palm: multitaxon impacts, biodiversity indicators, and trade‐offs for conservation planning. , 2014, Ecological applications : a publication of the Ecological Society of America.

[15]  M. Cristescu,et al.  From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. , 2014, Trends in ecology & evolution.

[16]  Jonas Knape,et al.  The importance of individual developmental variation in stage-structured population models. , 2014, Ecology letters.

[17]  Kai Zhu,et al.  More than the sum of the parts: forest climate response from joint species distribution models. , 2014, Ecological applications : a publication of the Ecological Society of America.

[18]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[19]  James S. Clark,et al.  Competition‐interaction landscapes for the joint response of forests to climate change , 2014, Global change biology.

[20]  Laura J. Pollock,et al.  Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM) , 2014 .

[21]  David I. Warton,et al.  The fourth‐corner solution – using predictive models to understand how species traits interact with the environment , 2014 .

[22]  Stefan Hochrainer-Stigler,et al.  Increasing stress on disaster-risk finance due to large floods , 2014 .

[23]  D. Macdonald,et al.  Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species , 2014, Ecology and evolution.

[24]  Wim A. Ozinga,et al.  Selecting traits that explain species–environment relationships: a generalized linear mixed model approach , 2013 .

[25]  Francis K C Hui,et al.  To mix or not to mix: comparing the predictive performance of mixture models vs. separate species distribution models. , 2013, Ecology.

[26]  Otso Ovaskainen,et al.  Community-level phenological response to climate change , 2013, Proceedings of the National Academy of Sciences.

[27]  David I. Warton,et al.  Finite Mixture of Regression Modeling for High-Dimensional Count and Biomass Data in Ecology , 2013 .

[28]  Carsten F. Dormann,et al.  Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents , 2012 .

[29]  J. Raes,et al.  Microbial interactions: from networks to models , 2012, Nature Reviews Microbiology.

[30]  Yi Wang,et al.  mvabund– an R package for model‐based analysis of multivariate abundance data , 2012 .

[31]  Claudia Czado,et al.  Pair Copula Constructions for Multivariate Discrete Data , 2012 .

[32]  Dirk R. Schmatz,et al.  Climate, competition and connectivity affect future migration and ranges of European trees , 2012 .

[33]  D. Warton,et al.  Distance‐based multivariate analyses confound location and dispersion effects , 2012 .

[34]  M. Wand,et al.  Gaussian Variational Approximate Inference for Generalized Linear Mixed Models , 2012 .

[35]  Jared S. Murray,et al.  Bayesian Gaussian Copula Factor Models for Mixed Data , 2011, Journal of the American Statistical Association.

[36]  Donald A. Jackson,et al.  Random-effects ordination: describing and predicting multivariate correlations and co-occurrences , 2011 .

[37]  Russell B. Millar,et al.  Maximum Likelihood Estimation and Inference: With Examples in R, SAS and ADMB , 2011 .

[38]  David J. Bartholomew,et al.  Latent Variable Models and Factor Analysis: A Unified Approach , 2011 .

[39]  Antoine Guisan,et al.  SESAM – a new framework integrating macroecological and species distribution models for predicting spatio‐temporal patterns of species assemblages , 2011 .

[40]  Matthew R. Helmus,et al.  Generalized linear mixed models for phylogenetic analyses of community structure , 2011 .

[41]  D. Dunson,et al.  Sparse Bayesian infinite factor models. , 2011, Biometrika.

[42]  David I Warton,et al.  Regularized Sandwich Estimators for Analysis of High‐Dimensional Data Using Generalized Estimating Equations , 2011, Biometrics.

[43]  Scott D. Foster,et al.  Model based grouping of species across environmental gradients , 2011 .

[44]  Otso Ovaskainen,et al.  Making more out of sparse data: hierarchical modeling of species communities. , 2011, Ecology.

[45]  Otso Ovaskainen,et al.  Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. , 2010, Ecology.

[46]  M. Wand,et al.  Explaining Variational Approximations , 2010 .

[47]  Robert B. O'Hara,et al.  Do not log‐transform count data , 2010 .

[48]  Catherine A Calder,et al.  Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. , 2009, Ecological applications : a publication of the Ecological Society of America.

[49]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[50]  Jennifer C. Adam,et al.  Implications of global climate change for snowmelt hydrology in the twenty‐first century , 2009 .

[51]  Mollie E. Brooks,et al.  Generalized linear mixed models: a practical guide for ecology and evolution. , 2009, Trends in ecology & evolution.

[52]  P. Taberlet,et al.  DNA barcoding for ecologists. , 2009, Trends in ecology & evolution.

[53]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[54]  David I. Warton,et al.  Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices , 2008 .

[55]  R. G. Davies,et al.  Methods to account for spatial autocorrelation in the analysis of species distributional data : a review , 2007 .

[56]  Anne-Béatrice Dufour,et al.  The ade4 Package: Implementing the Duality Diagram for Ecologists , 2007 .

[57]  Jane Elith,et al.  Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines , 2007 .

[58]  Dimitris Rizopoulos,et al.  ltm: An R Package for Latent Variable Modeling and Item Response Analysis , 2006 .

[59]  James B. Grace,et al.  Structural Equation Modeling and Natural Systems , 2006 .

[60]  Antoine Guisan,et al.  Spatial modelling of biodiversity at the community level , 2006 .

[61]  B. Enquist,et al.  Rebuilding community ecology from functional traits. , 2006, Trends in ecology & evolution.

[62]  P. Choler Consistent Shifts in Alpine Plant Traits along a Mesotopographical Gradient , 2005 .

[63]  James W. Hardin,et al.  Generalized Estimating Equations (GEE) , 2005 .

[64]  Malik Beshir Malik,et al.  Applied Linear Regression , 2005, Technometrics.

[65]  L. Corrado Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models , 2005 .

[66]  P. Legendre,et al.  ANALYZING BETA DIVERSITY: PARTITIONING THE SPATIAL VARIATION OF COMMUNITY COMPOSITION DATA , 2005 .

[67]  Sophia Rabe-Hesketh,et al.  Generalized latent variable models: multilevel, longitudinal, and structural equation models , 2004 .

[68]  Elvezio Ronchetti,et al.  Estimation of generalized linear latent variable models , 2004 .

[69]  Eric R. Ziegel,et al.  An Introduction to Generalized Linear Models , 2002, Technometrics.

[70]  S. Rabe-Hesketh,et al.  Reliable Estimation of Generalized Linear Mixed Models using Adaptive Quadrature , 2002 .

[71]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .

[72]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[73]  P. Legendre,et al.  RELATING BEHAVIOR TO HABITAT: SOLUTIONS TO THEFOURTH-CORNER PROBLEM , 1997 .

[74]  M. Hill,et al.  Data analysis in community and landscape ecology , 1987 .

[75]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[76]  Hugh G. Gauch,et al.  Multivariate analysis in community ecology , 1984 .

[77]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[78]  Francis K C Hui,et al.  The arcsine is asinine: the analysis of proportions in ecology. , 2011, Ecology.

[79]  Dimitrios Rizopoulos ltm: An R Package for Latent Variable Modeling and Item Response Theory Analyses , 2006 .

[80]  C.J.F. ter Braak,et al.  A Theory of Gradient Analysis , 2004 .

[81]  E. Luciano,et al.  Copula methods in finance , 2004 .

[82]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[83]  Partha S. Vasisht Computational Analysis of Microarray Data , 2003 .

[84]  M. Westoby,et al.  ECOLOGICAL STRATEGIES : Some Leading Dimensions of Variation Between Species , 2002 .

[85]  THE CONDITION OF FORESTS IN EUROPE , 2002 .

[86]  ModelsThomas W. Yee Reduced-rank Vector Generalized Linear Models , 2000 .

[87]  H. Stern,et al.  Bayesian Data Analysis , 1995 .

[88]  R. Meech,et al.  An introduction to generalized linear models , 1990 .

[89]  D. Goodall,et al.  Objective methods for the classification of vegetation. III. An essay in the use of factor analysis , 1954 .