Data integration with uncertainty

This paper reports our first set of results on managing uncertainty in data integration. We posit that data-integration systems need to handle uncertainty at three levels and do so in a principled fashion. First, the semantic mappings between the data sources and the mediated schema may be approximate because there may be too many of them to be created and maintained or because in some domains (e.g., bioinformatics) it is not clear what the mappings should be. Second, the data from the sources may be extracted using information extraction techniques and so may yield erroneous data. Third, queries to the system may be posed with keywords rather than in a structured form. As a first step to building such a system, we introduce the concept of probabilistic schema mappings and analyze their formal foundations. We show that there are two possible semantics for such mappings: by-table semantics assumes that there exists a correct mapping but we do not know what it is; by-tuple semantics assumes that the correct mapping may depend on the particular tuple in the source data. We present the query complexity and algorithms for answering queries in the presence of probabilistic schema mappings, and we describe an algorithm for efficiently computing the top-k answers to queries in such a setting. Finally, we consider using probabilistic mappings in the scenario of data exchange.

[1]  Laura M. Haas,et al.  Beauty and the Beast: The Theory and Practice of Information Integration , 2007, ICDT.

[2]  David Maier,et al.  Principles of dataspace systems , 2006, PODS '06.

[3]  Surajit Chaudhuri,et al.  DBXplorer: a system for keyword-based search over relational databases , 2002, Proceedings 18th International Conference on Data Engineering.

[4]  Michel de Rougemont,et al.  Approximate Data Exchange , 2007, ICDT.

[5]  Moni Naor,et al.  Optimal aggregation algorithms for middleware , 2001, PODS.

[6]  Avigdor Gal,et al.  Why is schema matching tough and what can we do about it? , 2006, SGMD.

[7]  Alon Y. Halevy,et al.  Answering queries using views: A survey , 2001, The VLDB Journal.

[8]  Vagelis Hristidis,et al.  DISCOVER: Keyword Search in Relational Databases , 2002, VLDB.

[9]  Sang-goo Lee,et al.  Keyword search in relational databases , 2010, Knowledge and Information Systems.

[10]  Alon Y. Halevy,et al.  A Platform for Personal Information Management and Integration , 2005, CIDR.

[11]  Avigdor Gal,et al.  Managing Uncertainty in Schema Matching with Top-K Schema Mappings , 2006, J. Data Semant..

[12]  Surajit Chaudhuri,et al.  DBXplorer: enabling keyword search over relational databases , 2002, SIGMOD '02.

[13]  HalevyAlon,et al.  Data integration with uncertainty , 2009, VLDB 2009.

[14]  Jennifer Widom,et al.  ULDBs: databases with uncertainty and lineage , 2006, VLDB.

[15]  Dan Suciu,et al.  Foundations of probabilistic answers to queries , 2005, SIGMOD '05.

[16]  Kevin Chen-Chuan Chang,et al.  Supporting ad-hoc ranking aggregates , 2006, SIGMOD Conference.

[17]  Luis Gravano,et al.  Efficient IR-Style Keyword Search over Relational Databases , 2003, VLDB.

[18]  Joann J. Ordille,et al.  Data integration: the teenage years , 2006, VLDB.

[19]  G KolaitisPhokion,et al.  Composing schema mappings , 2005 .

[20]  Ronald Fagin,et al.  Composing schema mappings: second-order dependencies to the rescue , 2004, PODS '04.

[21]  Ronald Fagin,et al.  Inverting schema mappings , 2006, TODS.

[22]  Alon Y. Halevy,et al.  Enterprise information integration: successes, challenges and controversies , 2005, SIGMOD '05.

[23]  Jayant Madhavan,et al.  Composing Mappings Among Data Sources , 2003, VLDB.

[24]  Philip A. Bernstein,et al.  Implementing mapping composition , 2007, The VLDB Journal.

[25]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[26]  Ronald Fagin,et al.  Data exchange: getting to the core , 2003, PODS '03.

[27]  Maurizio Lenzerini,et al.  Data integration: a theoretical perspective , 2002, PODS.

[28]  Christopher Ré,et al.  Query Evaluation on Probabilistic Databases , 2006, IEEE Data Eng. Bull..

[29]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[30]  Alon Y. Halevy,et al.  Bootstrapping pay-as-you-go data integration systems , 2008, SIGMOD Conference.

[31]  Alon Y. Halevy,et al.  Using Probabilistic Information in Data Integration , 1997, VLDB.

[32]  Christoph Koch,et al.  World-set decompositions: Expressiveness and efficient algorithms , 2007, Theor. Comput. Sci..

[33]  Sunil Prabhakar,et al.  Querying imprecise data in moving object environments , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[34]  Serge Abiteboul,et al.  Complexity of answering queries using materialized views , 1998, PODS.

[35]  Umberto Straccia,et al.  Information retrieval and machine learning for probabilistic schema matching , 2007, Inf. Process. Manag..

[36]  Jennifer Widom,et al.  Databases with uncertainty and lineage , 2008, The VLDB Journal.