Limited options for low-global-warming-potential refrigerants

Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable. We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performance in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. The maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range.

[1]  J. Wojtusiak,et al.  A thermodynamic analysis of refrigerants: Performance limits of the vapor compression cycle , 2014 .

[2]  Noel M. O'Boyle,et al.  De novo design of molecular wires with optimal properties for solar energy conversion , 2011, Journal of Cheminformatics.

[3]  P. Domanski,et al.  Evaluation of suction-line/liquid-line heat exchange in the refrigeration cycle , 1994 .

[4]  Michael D. Frenkel,et al.  Computational Design of New Refrigerant Fluids Based on Environmental, Safety, and Thermodynamic Characteristics , 2012 .

[5]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[6]  Piotr A. Domanski,et al.  Evaluation of Carbon Dioxide as R-22 Substitute for Residential Air-Conditioning. | NIST , 2002 .

[7]  Riccardo Brignoli,et al.  Methodology for estimating thermodynamic parameters and performance of working fluids for organic Rankine cycles , 2014 .

[8]  M. Frenkel,et al.  Predictive correlations based on large experimental datasets: Critical constants for pure compounds , 2010 .

[9]  이수정 해외산업간호정보 - 미국 산업안전보건연구원(National Institute for Occupational Safety and Health) 소개 , 2009 .

[10]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[11]  K. Kobe The properties of gases and liquids , 1959 .

[12]  Piotr A. Domanski,et al.  A thermodynamic analysis of refrigerants: Possibilities and tradeoffs for Low-GWP refrigerants ☆ , 2014 .

[13]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[14]  CHUN WEI YAP,et al.  PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints , 2011, J. Comput. Chem..

[15]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1 | NIST , 2013 .

[16]  Axel Drefahl,et al.  CurlySMILES: a chemical language to customize and annotate encodings of molecular and nanodevice structures , 2011, J. Cheminformatics.

[17]  D. Didion,et al.  Quest for alternatives , 1987 .

[18]  Gang Fu,et al.  PubChem Substance and Compound databases , 2015, Nucleic Acids Res..

[19]  Olivier Sperandio,et al.  FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects , 2008, BMC Bioinformatics.

[20]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[21]  Piotr A. Domanski,et al.  CYCLE_D: NIST Vapor Compression Cycle Design Program Version 4.0 Users' Guide | NIST , 2003 .

[22]  Yu-ran Luo,et al.  Comprehensive handbook of chemical bond energies , 2007 .

[23]  K. E. Starling,et al.  Generalized multiparameter correlation for nonpolar and polar fluid transport properties , 1988 .

[24]  S. Ferrari,et al.  Author contributions , 2021 .

[25]  David W. Fahey,et al.  The large contribution of projected HFC emissions to future climate forcing , 2009, Proceedings of the National Academy of Sciences.

[26]  Mark O. McLinden,et al.  Thermodynamic evaluation of refrigerants in the vapour compression cycle using reduced properties , 1988 .

[27]  M. Moldover,et al.  Alternative refrigerants R123a, R134, R141b, R142b, and R152a: critical temperature, refractive index, surface tension, and estimates of liquid, vapor, and critical densities , 1990 .

[28]  Marcia L. Huber,et al.  Model for the Viscosity and Thermal Conductivity of Refrigerants, Including a New Correlation for the Viscosity of R134a , 2003 .

[29]  Malcom M. Renfew NIOSH Pocket guide to chemical hazards (U.S. Department of Health and Human Services- National Institute for Occupational Safety and Health) , 1991 .

[30]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[31]  W. Dekant,et al.  Biotransformation of trans-1,1,1,3-tetrafluoropropene (HFO-1234ze). , 2009, Toxicology and applied pharmacology.

[32]  Piotr A. Domanski,et al.  Comparitive analysis of an automotive air conditioning systems operating with CO2 and R134a , 2002 .

[33]  M. L. Huber,et al.  A Predictive Extended Corresponding States Model for Pure and Mixed Refrigerants , 1990 .

[34]  Piotr A. Domanski,et al.  A Simplified Cycle Simulation Model for the Performance Rating of Refrigerants and Refrigerant Mixtures , 1992 .

[35]  Paul R. Wyrwoll,et al.  Section 1.1 The Montreal Protocol on Substances that Deplete the Ozone Layer , 2012, Concise Handbook of Fluorocarbon Gases.