Several new numerical methods for compressible shear-layer simulations

[1]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[2]  C. Kennedy,et al.  Self‐similar supersonic variable‐density shear layers in binary systems , 1994 .

[3]  D. Gottlieb,et al.  Stable and accurate boundary treatments for compact, high-order finite-difference schemes , 1993 .

[4]  Satoru Yamamoto,et al.  Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations , 1993 .

[5]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[6]  Hervé Guillard,et al.  Adaptive spectral methods with application to mixing layer computations , 1992 .

[7]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[8]  M. Carpenter,et al.  Direct Simulation of High-Speed Mixing Layers , 1992 .

[9]  J. Beckers,et al.  Analytical linear numerical stability conditions for an anisotropic three-dimensional advection-diffusion equation , 1992 .

[10]  Marcel Lesieur,et al.  Direct and large-eddy simulations of transition in the compressible boundary layer , 1992 .

[11]  Thomas A. Zang,et al.  Direct numerical simulation of laminar breakdown in high-speed, axisymmetric boundary layers , 1992 .

[12]  S. Raman,et al.  A comparative study of numerical advection schemes featuring a one-step modified WKL algorithm , 1991 .

[13]  P. Moin,et al.  Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer , 1991 .

[14]  David H. Rudy,et al.  Secondary frequencies in the wake of a circular cylinder with vortex shedding , 1991, Journal of Fluid Mechanics.

[15]  Neil D. Sandham,et al.  Three-dimensional simulations of large eddies in the compressible mixing layer , 1991, Journal of Fluid Mechanics.

[16]  J. Sowa Stability of a Runge-Kutta method for the Navier-Stokes equation , 1990 .

[17]  M. H. Carpenter,et al.  A high-order compact numerical algorithm for supersonic flows , 1990 .

[18]  W. S. Don,et al.  Spectral simulation of an unsteady compressible flow past a circular cylinder , 1990 .

[19]  Gordon Erlebacher,et al.  The analysis and simulation of compressible turbulence , 1990, Theoretical and Computational Fluid Dynamics.

[20]  W. F. Ng,et al.  A concentration probe for the study of mixing in supersonic shear flows , 1989 .

[21]  J. Philip Drummond,et al.  A two-dimensional numerical simulation of a supersonic, chemically reacting mixing layer , 1988 .

[22]  J. Riley,et al.  A study of inviscid, supersonic mixing layers using a second-order TVD scheme , 1988 .

[23]  R. Purser The Filtering of Meteorological Fields , 1987 .

[24]  A. Bayliss,et al.  A fourth-order scheme for the unsteady compressible Navier-Stokes equations , 1985 .

[25]  Arthur Rizzi,et al.  Computer-aided analysis of the convergence to steady state of discrete approximations to the euler equations , 1985 .

[26]  A. Sivasankara Reddy,et al.  Higher order accuracy finite-difference schemes for hyperbolic conservation laws , 1982 .

[27]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[28]  Eli Turkel,et al.  Multidimensional Difference Schemes with Fourth-Order Accuracy , 1976 .

[29]  Eli Turkel,et al.  Dissipative two-four methods for time-dependent problems , 1976 .

[30]  B. Gustafsson The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .

[31]  D. Anderson,et al.  A comparison of numerical solutions of the advective equation , 1974 .

[32]  D. Gottlieb,et al.  Difference Schemes with Fourth Order Accuracy for Hyperbolic Equations , 1974 .

[33]  D. Anderson,et al.  A comparison of numerical solutions to the inviscid equations of fluid motion , 1974 .

[34]  R. F. Warming,et al.  The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .

[35]  Paul Kutler,et al.  Second- and Third-Order Noncentered Difference Schemes for Nonlinear Hyperbolic Equations , 1973 .

[36]  Paul Kutler,et al.  Computation of Space Shuttle Flowfields Using Noncentered Finite-Difference Schemes , 1973 .

[37]  V. Rusanov,et al.  On difference schemes of third order accuracy for nonlinear hyperbolic systems , 1970 .

[38]  R. Maccormack The Effect of Viscosity in Hypervelocity Impact Cratering , 1969 .

[39]  Wen-Yih Sun Comments on “A Comparative Study of Numerical Advection Schemes Featuring a One-Step Modified WKL Algorithm” , 1993 .

[40]  S. Osher,et al.  High-order ENO schemes applied to two- and three-dimensional compressible flow , 1992 .

[41]  Sanjiva K. Lele,et al.  Direct numerical simulation of compressible free shear flows , 1989 .

[42]  Sin-Chung Chang On the validity of the modified equation approach to the stability analysis of finite-difference methods , 1987 .

[43]  Thomas H. Pulliam,et al.  Artificial Dissipation Models for the Euler Equations , 1985 .

[44]  N. N. Yanenko,et al.  Classification of difference schemes of gas dynamics by the method of differential approximation—II. Two-dimensional case , 1983 .

[45]  Garrett Birkhoff,et al.  Numerical Fluid Dynamics. , 1983 .