Influence of potential well depth on nonlinear tristable energy harvesting

Numerical and experimental investigation into the influence of potential well depth on tristable energy harvesting performance is provided. The potential well depth depending on the polynomial coefficients of nonlinear restoring force is analyzed along with its effect on the numerical energy harvesting performance. Experiment results reveal that the geometry parameters of the multi-stable configuration can alter the potential function of tristable energy harvesters. Moreover, the shallower potential well depth will enhance the broadband performance and the capability of harvesting energy from low frequency ambient vibration.

[1]  Bozidar Marinkovic,et al.  Smart Sand—a wide bandwidth vibration energy harvesting platform , 2009 .

[2]  Brian P. Mann,et al.  Harmonic balance analysis of the bistable piezoelectric inertial generator , 2012 .

[3]  K. W. Wang,et al.  Prospects for Nonlinear Energy Harvesting Systems Designed Near the Elastic Stability Limit When Driven by Colored Noise , 2014 .

[4]  Junyi Cao,et al.  Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting , 2014 .

[5]  Pilkee Kim,et al.  A multi-stable energy harvester: Dynamic modeling and bifurcation analysis , 2014 .

[6]  B. Mann,et al.  Reversible hysteresis for broadband magnetopiezoelastic energy harvesting , 2009 .

[7]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .

[8]  S. Baglio,et al.  Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters , 2010 .

[9]  Grzegorz Litak,et al.  Magnetopiezoelastic energy harvesting driven by random excitations , 2010 .

[10]  Mohammed F. Daqaq,et al.  Relative performance of a vibratory energy harvester in mono- and bi-stable potentials , 2011 .

[11]  Daniel J. Inman,et al.  Nonlinear dynamic characteristics of variable inclination magnetically coupled piezoelectric energy harvesters , 2015 .

[12]  Mohammed F. Daqaq,et al.  Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise , 2014 .

[13]  Sihong Zhao,et al.  On the stochastic excitation of monostable and bistable electroelastic power generators: Relative advantages and tradeoffs in a physical system , 2013 .

[14]  Junyi Cao,et al.  Broadband tristable energy harvester: Modeling and experiment verification , 2014 .

[15]  Alper Erturk,et al.  Enhanced broadband piezoelectric energy harvesting using rotatable magnets , 2013 .

[16]  Mohammed F. Daqaq,et al.  Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise , 2011 .

[17]  G. Litak,et al.  Stationary response of nonlinear magneto-piezoelectric energy harvester systems under stochastic excitation , 2013 .

[18]  I. Kovacic,et al.  Potential benefits of a non-linear stiffness in an energy harvesting device , 2010 .

[19]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[20]  Louis van Blarigan,et al.  A broadband vibrational energy harvester , 2012 .

[21]  B. Mann,et al.  Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator , 2010 .

[22]  E. Halvorsen Fundamental issues in nonlinear wideband-vibration energy harvesting. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Igor Neri,et al.  Nonlinear oscillators for vibration energy harvesting , 2009 .

[24]  A. Erturk,et al.  On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion , 2014 .

[25]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[26]  D. Inman,et al.  Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling , 2011 .

[27]  Sang-Gook Kim,et al.  Ultra-wide bandwidth piezoelectric energy harvesting , 2011 .