Lambert W Function for Applications in Physics

Abstract The Lambert W ( x ) function and its possible applications in physics are presented. The actual numerical implementation in C++ consists of Halley’s and Fritsch’s iterations with initial approximations based on branch-point expansion, asymptotic series, rational fits, and continued-logarithm recursion. Program summary Program title: LambertW Catalogue identifier: AENC_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENC_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 1335 No. of bytes in distributed program, including test data, etc.: 25 283 Distribution format: tar.gz Programming language: C++ (with suitable wrappers it can be called from C, Fortran etc.), the supplied command-line utility is suitable for other scripting languages like sh, csh, awk, perl etc. Computer: All systems with a C++ compiler. Operating system: All Unix flavors, Windows. It might work with others. RAM: Small memory footprint, less than 1 MB Classification: 1.1, 4.7, 11.3, 11.9. Nature of problem: Find fast and accurate numerical implementation for the Lambert W function. Solution method: Halley’s and Fritsch’s iterations with initial approximations based on branch-point expansion, asymptotic series, rational fits, and continued logarithm recursion. Additional comments: Distribution file contains the command-line utility lambert-w. Doxygen comments, included in the source files. Makefile. Running time: The tests provided take only a few seconds to run.

[1]  S. Pudasaini Some exact solutions for debris and avalanche flows , 2011 .

[2]  Andrew G. Glen,et al.  APPL , 2001 .

[3]  Alexandru Iosup,et al.  Estimating The Size Of Peer-To-Peer Networks Using Lambert's W Function , 2008, CoreGRID Integration Workshop.

[4]  M. Roth,et al.  The offline software framework of the Pierre Auger Observatory , 2005, IEEE Nuclear Science Symposium Conference Record, 2005.

[5]  Jacques Calmet,et al.  Artificial Intelligence, Automated Reasoning, and Symbolic Computation , 2002, Lecture Notes in Computer Science.

[6]  Tony C. Scott,et al.  Nodal surfaces of helium atom eigenfunctions , 2007 .

[7]  Sun Yi,et al.  Controllability and Observability of Systems of Linear Delay Differential Equations via the Matrix Lambert W Function , 2007, 2007 American Control Conference.

[8]  G. Pólya,et al.  Aufgaben und Lehrsätze aus der Analysis: Erster Band: Reihen · Integralrechnung Funktionentheorie , 1925 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  J. Caillol Some applications of the Lambert W function to classical statistical mechanics , 2003, cond-mat/0306562.

[11]  Robert M. Corless,et al.  The Wright ! function , 2002 .

[12]  F. Fritsch,et al.  Solution of the transcendental equation wew = x , 1973, CACM.

[13]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[14]  B. M. Fulk MATH , 1992 .

[15]  W. E. H. B.,et al.  Aufgaben und Lehrsätze aus der Analysis. , 1925, Nature.

[16]  E. Longo,et al.  Monte Carlo calculation of photon-initiated electromagnetic showers in lead glass , 1975 .

[17]  Tony C. Scott,et al.  Resolution of a paradox in the calculation of exchange forces for H+2 , 1993 .

[18]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[19]  Sergei Gorlatch,et al.  Grid Computing: Achievements and Prospects , 2008 .

[20]  D. Jeffrey,et al.  The Lambert W function and quantum statistics , 2009 .

[21]  Alessandro Bassi,et al.  Grid Computing: Achievements and Prospects , 2008 .

[22]  K. Kampert,et al.  Measurements of the Cosmic Ray Composition with Air Shower Experiments , 2011, 1201.0018.

[23]  John Archibald Wheeler,et al.  Stability of a Schwarzschild singularity , 1957 .

[24]  J. E. Moyal XXX. Theory of ionization fluctuations , 1955 .

[25]  A. Galip Ulsoy,et al.  Delay differential equations via the matrix Lambert W function and bifurcation analysis: application to machine tool chatter. , 2007, Mathematical biosciences and engineering : MBE.

[26]  Tony C. Scott,et al.  General relativity and quantum mechanics: towards a generalization of the Lambert W function A Generalization of the Lambert W Function , 2006, Applicable Algebra in Engineering, Communication and Computing.

[27]  Tony C. Scott,et al.  New approach for the electronic energies of the hydrogen molecular ion , 2006, physics/0607081.

[28]  C. Walck Hand-book on statistical distributions for experimentalists , 1996 .

[29]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[30]  Ove Steinvall Laser system range calculations and the Lambert W function. , 2009, Applied optics.

[31]  T. R. Scavo,et al.  On the Geometry of Halley's Method , 1995 .

[32]  Robert M. Corless,et al.  A sequence of series for the Lambert W function , 1997, ISSAC.