Modeling height-diameter curves for prediction
暂无分享,去创建一个
Lauri Mehtätalo | Timothy G. Gregoire | Sergio de-Miguel | T. Gregoire | L. Mehtätalo | S. de-Miguel
[1] R. Curtis. Height-Diameter and Height-Diameter-Age Equations For Second-Growth Douglas-Fir , 1967 .
[2] Juha Lappi,et al. A Height Prediction Model with Random Stand and Tree Parameters: An Alternative to Traditional Site Index Methods , 1988 .
[3] C. López-Sánchez,et al. Modelling and localizing a stem taper function for Pinus radiata in Spain , 2015 .
[4] Thomas B. L. Kirkwood,et al. Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’ , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.
[5] T. Pukkala,et al. A comparison of fixed- and mixed-effects modeling in tree growth and yield prediction of an indigenous neotropical species (Centrolobium tomentosum) in a plantation system , 2013 .
[6] S. Meng,et al. Improved calibration of nonlinear mixed-effects models demonstrated on a height growth function. , 2009 .
[7] Douglas P. Wiens,et al. Comparison of nonlinear height–diameter functions for major Alberta tree species , 1992 .
[8] Nicholas L. Crookston,et al. User's guide to the stand prognosis model / , 1982 .
[9] J. Lappi. Calibration of Height and Volume Equations with Random Parameters , 1991, Forest Science.
[10] R. Pearl,et al. On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation. , 1920, Proceedings of the National Academy of Sciences of the United States of America.
[11] J. Lappi. Mixed linear models for analyzing and predicting stem form variation of Scots pine , 1986 .
[12] V. Carey,et al. Mixed-Effects Models in S and S-Plus , 2001 .
[13] Rafael Calama,et al. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain , 2004 .
[14] Lauri Mehtätalo,et al. A longitudinal height-diameter model for Norway spruce in Finland , 2004 .
[15] Manfred Näslund,et al. Skogsförsöksanstaltens gallringsförsök i tallskog , 1936 .
[16] W. Weibull. A Statistical Distribution Function of Wide Applicability , 1951 .
[17] Hailemariam Temesgen,et al. Effects of height imputation strategies on stand volume estimation , 2009 .
[18] E. Sibbesen. SOME NEW EQUATIONS TO DESCRIBE PHOSPHATE SORPTION BY SOILS , 1981 .
[19] K. Eerikäinen,et al. Subject-Specific Prediction Using a Nonlinear Mixed Model: Consequences of Different Approaches , 2015 .
[20] D. A. King,et al. Height-diameter allometry of tropical forest trees , 2010 .
[21] J. Flewelling,et al. Considerations in simultaneous curve fitting for repeated height–diameter measurements , 1994 .
[22] Hailemariam Temesgen,et al. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests , 2008 .
[23] D. Bates,et al. Mixed-Effects Models in S and S-PLUS , 2001 .
[24] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[25] Boris Zeide,et al. Analysis of Growth Equations , 1993 .
[26] M. J. Box. Bias in Nonlinear Estimation , 1971 .
[27] M. Tomé,et al. Height–diameter equation for first rotation eucalypt plantations in Portugal , 2002 .
[28] M. Tomé,et al. Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands , 2011, Annals of Forest Science.
[29] H. A. Meyer. A mathematical expression for height curves. , 1940 .
[30] MehtätaloLauri,et al. Evaluating marginal and conditional predictions of taper models in the absence of calibration data , 2012 .
[31] S. Huang,et al. Development of ecoregion-based height–diameter models for white spruce in boreal forests , 2000 .
[32] F. J. Richards. A Flexible Growth Function for Empirical Use , 1959 .
[33] Jouni Siipilehto,et al. Improving the Accuracy of Predicted Basal-Area Diameter Distribution in Advanced Stands by Determining Stem Number , 1999 .
[34] Benjamin Gompertz,et al. XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S. &c , 1825, Philosophical Transactions of the Royal Society of London.
[35] L. Mehtätalo,et al. Linear mixed-effects models and calibration applied to volume models in two rotations of Eucalyptus grandis plantations , 2016 .
[36] Harold E. Burkhart,et al. An Evaluation of Sampling Methods and Model Forms for Estimating Height-Diameter Relationships in Loblolly Pine Plantations , 1992, Forest Science.
[37] H. Temesgen,et al. Generalized height–diameter models—an application for major tree species in complex stands of interior British Columbia , 2004, European Journal of Forest Research.
[38] J. Soest. The main problems in sample plots. 1. Trees on the periphery. , 1950 .
[39] L. Mehtätalo. Height-diameter models for Scots pine and birch in Finland , 2005 .
[40] J. Lappi,et al. A Longitudinal Analysis of Height/Diameter Curves , 1997, Forest Science.
[41] David A. Ratkowsky,et al. Handbook of nonlinear regression models , 1990 .
[42] L. Zhang,et al. Height-diameter equations for ten tree species in the inland Northwest , 1996 .
[43] Douglas J. Stevenson,et al. A Random-Parameter Height-Dbh Model for Cherrybark Oak , 2005 .
[44] T. Gregoire,et al. Minimum Subsamples of Tree Heights for Accurate Estimation of Loblolly Pine Plot Volume , 1993 .