Origin of lateral variation of seismic wave velocities and density in the deep mantle

Strong constraints can be placed on the origin of heterogeneity of seismic wave velocities and density if the observed ratios of various parameters are compared with mineral physics predictions. They include the shear to compressional wave velocity heterogeneity ratio, Rs/p ≡ δ log Vs/δ log Vp, the bulk sound to shear wave velocity heterogeneity ratio, Rϕ/s ≡ δ log Vϕ/δ log Vs, and the density to velocity heterogeneity ratio, Rρ/s,p ≡ δ log ρ/δ log Vs,p. Using mineral physics considerations, we calculate these ratios in the lower mantle corresponding to the thermal and chemical origin of velocity and density heterogeneity. Both anharmonic and anelastic effects are considered for thermal origin. Anharmonic effects are estimated from the theoretical calculations as well as from laboratory measurements which show a marked increase in Rs/p with pressure from ∼1.5 to ∼2.1 in the lower mantle. Such a trend is marginally consistent with seismological observations showing an increase in Rs/p with depth (from ∼1.7 to ∼3.2 in the lower mantle). However, anharmonic effect alone cannot explain inferred low Rρ/s ( 2.7) and corresponding negative values of Rϕ/s (and Rρ/s) in the deep lower mantle which cannot be accounted for by thermal or simple chemical heterogeneity such as the heterogeneity in the Fe/(Fe + Mg) and/or Mg/(Mg + Si) ratios. Possible causes of anomalies in this region are discussed, including the role of anisotropy and a combined effect of heterogeneity in Fe and Ca content.

[1]  Stefano de Gironcoli,et al.  First principles thermoelasticity of MgSiO3‐perovskite: Consequences for the inferred properties of the lower mantle , 2001 .

[2]  R. D. van der Hilst,et al.  Comparing P and S wave heterogeneity in the mantle , 2001 .

[3]  B. Romanowicz Can we resolve 3D density heterogeneity in the lower mantle? , 2001 .

[4]  Gabi Laske,et al.  The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure , 2013 .

[5]  Guust Nolet,et al.  Wave front healing and the evolution of seismic delay times , 2000 .

[6]  Y. Takei Acoustic properties of partially molten media studied on a simple binary system with a controllable dihedral angle , 2000 .

[7]  J. Berryman Seismic velocity decrement ratios for regions of partial melt in the lower mantle , 2000 .

[8]  L. Fleitout,et al.  A global geoid model with imposed plate velocities and partial layering , 1999 .

[9]  Stefano de Gironcoli,et al.  First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions , 1999, Science.

[10]  J. Gerald,et al.  Viscoelasticity of the titanate perovskites CaTiO3 and SrTiO3 at high temperature , 1999 .

[11]  Z. Wang The melting of Al-bearing perovskite at the core–mantle boundary , 1999 .

[12]  J. Tromp,et al.  Normal-mode and free-Air gravity constraints on lateral variations in velocity and density of Earth's mantle , 1999, Science.

[13]  L. Stixrude,et al.  Seismic velocities of major silicate and oxide phases of the lower mantle , 1999 .

[14]  R. Hilst,et al.  Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model , 1999, Science.

[15]  R. Hilst,et al.  Compositional stratification in the deep mantle , 1999, Science.

[16]  Boehler,et al.  (Mg,Fe)SiO3-Perovskite Stability and Lower Mantle Conditions , 1998, Science.

[17]  H. Mao,et al.  The fate of subducted basaltic crust in the Earth's lower mantle , 1999, Nature.

[18]  A. Berg,et al.  Radial profiles of temperature and viscosity in the Earth's mantle inferred from the geoid and lateral seismic structure , 1998 .

[19]  S. Karato,et al.  High pressure elastic anisotropy of MgSiO3 perovskite and geophysical implications , 1998 .

[20]  D. Helmberger,et al.  Interpreting D" seismic structure using synthetic waveforms computed from dynamic models , 1998 .

[21]  Liebermann,et al.  Ultrasonic shear wave velocities of MgSiO3 perovskite at 8 GPa and 800 K and lower mantle composition , 1998, Science.

[22]  I. Jackson Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal , 1998 .

[23]  B. Kennett,et al.  Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle , 1998 .

[24]  J. Gerald,et al.  Mineralogy and dynamics of a pyrolite lower mantle , 1998, Nature.

[25]  F. D. Stacey Thermoelasticity of a mineral composite and a reconsideration of lower mantle properties , 1998 .

[26]  J. Revenaugh,et al.  Seismic Evidence of Partial Melt Within a Possibly Ubiquitous Low-Velocity Layer at the Base of the Mantle , 1997 .

[27]  J. Crain,et al.  Elastic properties of orthorhombic MgSiO3 perovskite at lower mantle pressures , 1997 .

[28]  Wei-jia Su,et al.  Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle , 1997 .

[29]  S. Dutton,et al.  Shear attenuation and dispersion in MgO , 1997 .

[30]  S. Saxena,et al.  Stability of Perovskite (MgSiO3) in the Earth's Mantle , 1996, Science.

[31]  D. Rubie,et al.  The Effect of Alumina on Phase Transformations at the 660-Kilometer Discontinuity from Fe-Mg Partitioning Experiments , 1996, Science.

[32]  J. Woodhouse,et al.  Ratio of relative S to P velocity heterogeneity in the lower mantle , 1996 .

[33]  D. Weidner,et al.  (ϖμ/ϖT)P of the lower mantle , 1996 .

[34]  J. Woodhouse,et al.  Constraints on lower mantle physical properties from seismology and mineral physics , 1996 .

[35]  T. Katsura,et al.  Determination of Fe‐Mg partitioning between perovskite and magnesiowüstite , 1996 .

[36]  R. Boehler Melting of mantle and core materials at very high pressures , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  R. Hemley,et al.  Structure and bonding in the deep mantle and core , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  T. Kondo,et al.  Thermoelastic properties of MgSiO3 perovskite determined by in situ X ray observations up to 30 GPa and 2000 K , 1996 .

[39]  D. L. Anderson Equations of State of Solids for Geophysics and Ceramic Science [Book Review] , 1996 .

[40]  R. Withers,et al.  Phase relations, structure and crystal chemistry of some aluminous silicate perovskites , 1995 .

[41]  Geoffrey D. Price,et al.  Ab initio study of MgSiO3 and CaSiO3 perovskites at lower-mantle pressures , 1995 .

[42]  F. D. Stacey Theory of thermal and elastic properties of the lower mantle and core , 1995 .

[43]  P. Silver,et al.  Laboratory and seismological observations of lower mantle isotropy , 1995 .

[44]  A. Dziewoński,et al.  Continent-Ocean Chemical Heterogeneity in the Mantle Based on Seismic Tomography , 1995, Science.

[45]  S. Honda A simple parameterized model of Earth's thermal history with the transition from layered to whole mantle convection , 1995 .

[46]  B. Romanowicz Anelastic tomography: a new perspective on upper mantle thermal structure , 1994 .

[47]  A. Dziewoński,et al.  Joint inversions of seismic and geodynamic data for models of three—dimensional mantle heterogeneity , 1994 .

[48]  C. Froidevaux,et al.  Converting mantle tomography into mass anomalies to predict the Earth's radial viscosity , 1994 .

[49]  H. Nataf,et al.  SEISMIC DISCONTINUITY AT THE TOP OF D : A WORLD-WIDE FEATURE ? , 1993 .

[50]  P. Shearer,et al.  Seismic constraints on mantle flow and topography of the 660-km discontinuity: evidence for whole-mantle convection , 1993, Nature.

[51]  S. Karato,et al.  Importance of anelasticity in the interpretation of seismic tomography , 1993 .

[52]  D. Yuen,et al.  Geophysical inferences of thermal‐chemical structures in the lower mantle , 1993 .

[53]  J. Gerald,et al.  Partitioning of MgO, FeO, NiO, MnO and Cr2O3 between magnesian silicate perovskite and magnesiowüstite: implications for the origin of inclusions in diamond and the composition of the lower mantle , 1992 .

[54]  O. Anderson,et al.  The relationship between shear and compressional velocities at high pressures: Reconciliation of seismic tomography and mineral physics , 1992 .

[55]  O. Anderson,et al.  High‐temperature elastic constant data on minerals relevant to geophysics , 1992 .

[56]  Stefano de Gironcoli,et al.  Ab initio calculation of phonon dispersions in semiconductors. , 1991, Physical review. B, Condensed matter.

[57]  S. Karato,et al.  Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle , 1990 .

[58]  A. Agnon,et al.  δs at high pressure and dlnVs/dlnVp in the lower mantle , 1990 .

[59]  D. L. Anderson Theory of Earth , 2014 .

[60]  O. Anderson,et al.  Measured elastic moduli of single-crystal MgO up to 1800 K , 1989 .

[61]  Don L. Anderson,et al.  Thermally Induced Phase Changes, Lateral Heterogeneity of the Mantle, Continental Roots, and Deep Slab Anomalies , 1987 .

[62]  Don L. Anderson,et al.  A seismic equation of state II. Shear properties and thermodynamics of the lower mantle , 1987 .

[63]  A. Dziewoński,et al.  Global Images of the Earth's Interior , 1987, Science.

[64]  S. Honda The RMS residual temperature in the convecting mantle and seismic heterogeneities. , 1987 .

[65]  Robert W. Clayton,et al.  Lower mantle heterogeneity, dynamic topography and the geoid , 1985, Nature.

[66]  Raymond Jeanloz,et al.  Bulk attenuation in a polycrystalline Earth , 1982 .

[67]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[68]  D. Anderson,et al.  A model of dislocation-controlled rheology for the mantle , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[69]  Thomas H. Jordan,et al.  Composition and development of the continental tectosphere , 1978, Nature.

[70]  D. L. Anderson,et al.  Importance of Physical Dispersion in Surface Wave and Free Oscillation Problems: Review (Paper 6R0680) , 1977 .

[71]  F. D. Stacey Physics of the earth , 1977 .