Fractional order sliding mode controller design for antilock braking systems

Antilock braking system (ABS) is a highly nonlinear system including variation and uncertainties in the parameters due to changes in vehicle loadings, road condition, etc. It is a difficult task to design an ideal controller for ABS. In this paper, a novel robust controller named fractional order sliding mode controller (FOSMC) is proposed for ABS to regulate the slip to a desired value. The proposed FOSMC combines sliding mode controller (SMC) with fractional order dynamics, in which fractional order proportional-derivative (FOPD) sliding surface is adopted. FOSMC can not only deal with the uncertainties in ABS system but also track the desired slip faster than conventional integer order SMC with proportional or proportional-derivative sliding surface. Experimental results demonstrate the effectiveness of the proposed method.

[1]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[2]  Yangquan Chen,et al.  A new IIR-type digital fractional order differentiator , 2003, Signal Process..

[3]  Mehmet Önder Efe,et al.  Integral sliding mode control of a quadrotor with fractional order reaching dynamics , 2011 .

[4]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[5]  D. Cafagna,et al.  Fractional calculus: A mathematical tool from the past for present engineers [Past and present] , 2007, IEEE Industrial Electronics Magazine.

[6]  Mehmet Önder Efe,et al.  Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Jian Bai,et al.  Fractional-Order Anisotropic Diffusion for Image Denoising , 2007, IEEE Transactions on Image Processing.

[8]  Chunlei Zhang,et al.  Numerical Optimization-Based Extremum Seeking Control With Application to ABS Design , 2007, IEEE Transactions on Automatic Control.

[9]  Amir Poursamad,et al.  Adaptive feedback linearization control of antilock braking systems using neural networks , 2009 .

[10]  Chih-Min Lin,et al.  Self-learning fuzzy sliding-mode control for antilock braking systems , 2003, IEEE Trans. Control. Syst. Technol..

[11]  Wei-Yen Wang,et al.  Dynamic Slip-Ratio Estimation and Control of Antilock Braking Systems Using an Observer-Based Direct Adaptive Fuzzy–Neural Controller , 2009, IEEE Transactions on Industrial Electronics.

[12]  Hajime Nagoya Realizations of Affine Weyl Group Symmetries on the Quantum Painlevé Equations by Fractional Calculus , 2012 .

[13]  Zhiyuan Liu,et al.  A Switched Control Strategy for Antilock Braking System With On/Off Valves , 2011, IEEE Transactions on Vehicular Technology.

[14]  Ahmad Mirzaei,et al.  Design of an Optimal Fuzzy Controller for Antilock Braking Systems , 2005, IEEE Transactions on Vehicular Technology.

[15]  Reza Ghaderi,et al.  Fuzzy fractional order sliding mode controller for nonlinear systems , 2010 .

[16]  Mohamed Karim Bouafoura,et al.  PI λ D μ controller design for integer and fractional plants using piecewise orthogonal functions , 2010 .

[17]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[18]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[19]  Sangram Patil,et al.  Surface prediction and control algorithms for anti-lock brake system , 2012 .

[20]  Abdel Badie Sharkawy,et al.  Genetic fuzzy self-tuning PID controllers for antilock braking systems , 2010, Eng. Appl. Artif. Intell..

[21]  Hong Liang,et al.  Variable parameter sliding controller design for vehicle brake with wheel slip , 2006 .

[22]  Ali Aghagolzadeh,et al.  Designing a sliding mode controller for slip control of antilock brake systems , 2008 .

[23]  Stanislaw H. Zak,et al.  Designing a genetic neural fuzzy antilock-brake-system controller , 2002, IEEE Trans. Evol. Comput..

[24]  Ye Yan,et al.  Stability analysis for a fractional differential model of HIV infection of CD4+ T-cells with time delay , 2012, Math. Comput. Simul..

[25]  Hui Lin,et al.  Iterative learning control of antilock braking of electric and hybrid vehicles , 2005, IEEE Transactions on Vehicular Technology.

[26]  Chih-Min Lin,et al.  Neural-network hybrid control for antilock braking systems , 2003, IEEE Trans. Neural Networks.

[27]  Ran Tao,et al.  Image Encryption With Multiorders of Fractional Fourier Transforms , 2010, IEEE Transactions on Information Forensics and Security.

[28]  Mohammad Pourmahmood Aghababa Comments on “Fuzzy fractional order sliding mode controller for nonlinear systems” [Commun Nonlinear Sci Numer Simulat 15 (2010) 963–978] , 2012 .

[29]  Taehyun Shim,et al.  Investigation of Sliding-Surface Design on the Performance of Sliding Mode Controller in Antilock Braking Systems , 2008, IEEE Transactions on Vehicular Technology.

[30]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[31]  Okyay Kaynak,et al.  Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm , 2011, Neurocomputing.

[32]  Okyay Kaynak,et al.  A Grey System Modeling Approach for Sliding-Mode Control of Antilock Braking System , 2009, IEEE Transactions on Industrial Electronics.

[33]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[34]  Huang Jia-ning Design of an Optimal Fuzzy Controller for Antilock Braking System , 2010 .

[35]  Pushkin Kachroo,et al.  Sliding mode measurement feedback control for antilock braking systems , 1999, IEEE Trans. Control. Syst. Technol..

[36]  Sergey V. Drakunov,et al.  ABS control using optimum search via sliding modes , 1995, IEEE Trans. Control. Syst. Technol..

[37]  Chengbin Ma,et al.  Fractional-order control: Theory and applications in motion control [Past and present] , 2007, IEEE Industrial Electronics Magazine.

[38]  Stephen Yurkovich,et al.  Fuzzy learning control for antiskid braking systems , 1993, IEEE Trans. Control. Syst. Technol..