High-performance MoS2 transistors with low-resistance molybdenum contacts

In this Letter, molybdenum (Mo) is introduced and evaluated as an alternative contact metal to atomically-thin molybdenum disulphide (MoS2), and high-performance field-effect transistors are experimentally demonstrated. In order to understand the physical nature of the interface and highlight the role of the various factors contributing to the Mo-MoS2 contacts, density functional theory (DFT) simulations are employed, which reveal that Mo can form high quality contact interface with monolayer MoS2 with zero tunnel barrier and zero Schottky barrier under source/drain contact, as well as an ultra-low Schottky barrier (0.1 eV) at source/drain-channel junction due to strong Fermi level pinning. In agreement with the DFT simulations, high mobility, high ON-current, and low contact resistance are experimentally demonstrated on both monolayer and multilayer MoS2 transistors using Mo contacts. The results obtained not only reveal the advantages of using Mo as a contact metal for MoS2 but also highlight the fact that the properties of contacts with 2-dimensional materials cannot be intuitively predicted by solely considering work function values and Schottky theory.

[1]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[2]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[3]  J. R.,et al.  Chemistry , 1929, Nature.

[4]  G. Rubio‐Bollinger,et al.  Optical identification of atomically thin dichalcogenide crystals , 2010, 1003.2602.

[5]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[6]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[7]  A. Toriumi,et al.  Metal/graphene contact as a performance Killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[8]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[9]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[10]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[11]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[12]  J. Gilman,et al.  Nanotechnology , 2001 .

[13]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[14]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[15]  B. Radisavljevic,et al.  Visibility of dichalcogenide nanolayers , 2010, Nanotechnology.

[16]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[17]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[19]  K. Banerjee,et al.  High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance , 2013, 2013 IEEE International Electron Devices Meeting.

[20]  A. Toriumi,et al.  Contact resistivity and current flow path at metal/graphene contact , 2010 .

[21]  Wei Liu,et al.  A computational study of metal-contacts to beyond-graphene 2D semiconductor materials , 2012, 2012 International Electron Devices Meeting.

[22]  Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point , 2008, 0811.1459.

[23]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[24]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..