Intrinsic Data Retention in Nanoscaled Phase-Change Memories—Part II: Statistical Analysis and Prediction of Failure Time

The statistical spread of intrinsic data retention times in phase-change memory (PCM) cells is studied. Based on the crystallization and percolation model described in part 1, the crystalline grain size in the amorphous volume after data loss is extracted. From the temperature dependence of grain size, the authors calculate the statistical shape factor for the distribution of failure times, allowing a statistical prediction of data retention in PCM large arrays. The scaling and optimization issues with respect to failure time statistical spread are finally addressed

[1]  J. Christian,et al.  The theory of transformations in metals and alloys , 2003 .

[2]  J. Stathis Percolation models for gate oxide breakdown , 1999 .

[3]  S. Lai,et al.  OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[4]  Guo-Fu Zhou,et al.  Materials aspects in phase change optical recording , 2001 .

[5]  A. Petford-Long,et al.  Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films , 2002 .

[6]  A. Pirovano,et al.  Scaling analysis of phase-change memory technology , 2003, IEEE International Electron Devices Meeting 2003.

[7]  A. Pirovano,et al.  Crystallization and phase separation in Ge2+xSb2Te5 thin films , 2003 .

[8]  S. Lai,et al.  Current status of the phase change memory and its future , 2003, IEEE International Electron Devices Meeting 2003.

[9]  M. Wuttig,et al.  Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys , 2004 .

[10]  A. Pirovano,et al.  Electrothermal and phase-change dynamics in chalcogenide-based memories , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[11]  D. Ielmini,et al.  Reliability study of phase-change nonvolatile memories , 2004, IEEE Transactions on Device and Materials Reliability.

[12]  S.Y. Lee,et al.  Full integration and cell characteristics for 64Mb nonvolatile PRAM , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[13]  C. Wright,et al.  Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices , 2004 .

[14]  F. Pellizzer,et al.  Novel /spl mu/trench phase-change memory cell for embedded and stand-alone non-volatile memory applications , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[15]  Kinarn Kim,et al.  Reliability investigations for manufacturable high density PRAM , 2005, 2005 IEEE International Reliability Physics Symposium, 2005. Proceedings. 43rd Annual..

[16]  D. Ielmini,et al.  Impact of crystallization statistics on data retention for phase change memories , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[17]  K. Osada,et al.  Oxygen-doped gesbte phase-change memory cells featuring 1.5 V/100-/spl mu/A standard 0.13/spl mu/m CMOS operations , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[18]  D. Ielmini,et al.  Intrinsic Data Retention in Nanoscaled Phase-Change Memories—Part I: Monte Carlo Model for Crystallization and Percolation , 2006, IEEE Transactions on Electron Devices.