A generalization of the normal rational curve in $$\mathop {\mathrm{PG}}(d,q^n)$$PG(d,qn) and its associated non-linear MRD codes

Let A and B be two points of $$\mathop {\mathrm{PG}}(d,q^n)$$PG(d,qn) and let $$\Phi $$Φ be a collineation between the stars of lines with vertices A and B, that does not map the line AB into itself. In this paper we prove that if $$d=2$$d=2 or $$d\ge 3$$d≥3 and the lines $$\Phi ^{-1}(AB), AB, \Phi (AB) $$Φ-1(AB),AB,Φ(AB) are not in a common plane, then the set $$\mathcal{C}$$C of points of intersection of corresponding lines under $$\Phi $$Φ is the union of $$q-1$$q-1 scattered $${\mathbb {F}}_{q}$$Fq-linear sets of rank n together with $$\{A,B\}$${A,B}. As an application we will construct, starting from the set $$\mathcal{C}$$C, infinite families of non-linear $$(d+1, n, q;d-1)$$(d+1,n,q;d-1)-MRD codes, $$d\le n-1$$d≤n-1, generalizing those recently constructed in Cossidente et al. (Des Codes Cryptogr 79:597–609, 2016) and Durante and Siciliano (Electron J Comb, 2017).

[1]  Giorgio Donati,et al.  On the system of fixed points of a collineation in noncommutative projective geometry , 2002, Discret. Math..

[2]  Nicola Durante,et al.  Non-Linear Maximum Rank Distance Codes in the Cyclic Model for the Field Reduction of Finite Geometries , 2017, Electron. J. Comb..

[3]  Olga Polverino,et al.  Linear sets in finite projective spaces , 2010, Discret. Math..

[4]  William Kingdon Clifford,et al.  XX. On the classification of Loci , 1878, Philosophical Transactions of the Royal Society of London.

[5]  Giuseppe Marino,et al.  Non-linear maximum rank distance codes , 2016, Des. Codes Cryptogr..

[6]  Guglielmo Lunardon,et al.  Translation ovoids of orthogonal polar spaces , 2004 .

[7]  R. Trombetti,et al.  Maximum scattered linear sets of pseudoregulus type and the Segre variety $\mathcal{S}_{n,n}$ , 2012, 1211.3604.

[8]  J. Thas,et al.  General Galois geometries , 1992 .

[9]  Nicola Durante,et al.  Scattered linear sets generated by collineations between pencils of lines , 2014 .

[10]  Giuseppe Veronese,et al.  Behandlung der projectivischen Verhältnisse der Räume von verschiedenen Dimensionen durch das Princip des Prjjicirens und Schneidens. , 1881 .

[11]  Ernst M. Gabidulin,et al.  The new construction of rank codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[12]  B. Cooperstein External flats to varieties in PG(Mn,n(GF(q))) , 1997 .

[13]  Michel Lavrauw,et al.  Scattered Spaces with Respect to a Spread in PG(n,q) , 2000 .

[14]  Kenneth S. Davis,et al.  Lucas' Theorem for Prime Powers , 1990, Eur. J. Comb..

[15]  John Sheekey,et al.  A new family of linear maximum rank distance codes , 2015, Adv. Math. Commun..

[16]  Guglielmo Lunardon,et al.  MRD-codes and linear sets , 2017, J. Comb. Theory, Ser. A.

[17]  P. Dembowski Finite geometries , 1997 .

[18]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.