Stabilization of the Kawahara equation with localized damping

We study the stabilization of global solutions of the Kawahara (K) equation in a bounded interval, under the effect of a localized damping mechanism. The Kawahara equation is a model for small amplitude long waves. Using multiplier techniques and compactness arguments we prove the exponential decay of the solutions of the (K) model. The proof requires of a unique continuation theorem and the smoothing effect of the (K) equation on the real line, which are proved in this work.

[1]  Enrique Zuazua,et al.  Stabilization of the Korteweg-De Vries equation with localized damping , 2002 .

[2]  Lionel Rosier,et al.  Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain , 1997 .

[3]  Roger Grimshaw,et al.  Water Waves , 2021, Mathematics of Wave Propagation.

[4]  Hiroaki Ono,et al.  Weak Non-Linear Hydromagnetic Waves in a Cold Collision-Free Plasma , 1969 .

[5]  G. P. Menzala,et al.  On the uniform decay for the Korteweg–de Vries equation with weak damping , 2007 .

[6]  Takuji Kawahara,et al.  Approximate Equations for Long Nonlinear Waves on a Viscous Fluid , 1978 .

[7]  Guido Schneider,et al.  The Rigorous Approximation of Long-Wavelength Capillary-Gravity Waves , 2002 .

[8]  Jean-Michel Coron,et al.  Exact boundary controllability of a nonlinear KdV equation with critical lengths , 2004 .

[9]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[10]  Thomas J. Bridges,et al.  Linear Instability of Solitary Wave Solutions of the Kawahara Equation and Its Generalizations , 2002, SIAM J. Math. Anal..

[11]  Takuji Kawahara,et al.  Oscillatory Solitary Waves in Dispersive Media , 1972 .

[12]  Louis N. Howard,et al.  Solitary and Periodic Solutions of Nonlinear Nonintegrable Equations , 1997 .

[13]  Lionel Rosier,et al.  Global Stabilization of the Generalized Korteweg--de Vries Equation Posed on a Finite Domain , 2006, SIAM J. Control. Optim..

[14]  Felipe Linares,et al.  On the Benney–Lin and Kawahara Equations , 1997 .

[15]  Jeffrey Rauch,et al.  Exponential Decay of Solutions to Hyperbolic Equations in Bounded Domains , 1974 .

[16]  Jerry L. Bona,et al.  Comparison of model equations for small-amplitude long waves , 1999 .

[17]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[18]  E. Zuazua Exponential decay for the semilinear wave equation with localized damping , 1990 .

[19]  Jacques-Louis Lions Contrôlabilite exacte et homogénéisation (I) , 1988 .

[20]  Ademir F. Pazoto,et al.  Unique continuation and decay for the Korteweg-de Vries equation with localized damping , 2005 .

[21]  Carlos F. Vasconcellos,et al.  Stabilization of the linear Kawahara equation with localized damping , 2008, Asymptot. Anal..

[22]  Jean-Claude Saut,et al.  Unique continuation for some evolution equations , 1987 .

[23]  David L. Russell,et al.  Exact controllability and stabilizability of the Korteweg-de Vries equation , 1996 .

[24]  Felipe Linares,et al.  On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping , 2007 .

[25]  Nikolai A. Larkin,et al.  Kawahara equation in a bounded domain , 2008 .

[26]  Jaime H. Ortega,et al.  On the controllability and stabilization of the linearized Benjamin-Ono equation , 2005 .