First Radial Velocity Results From the MINiature Exoplanet Radial Velocity Array (MINERVA)

The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated observatory of four 0.7 m robotic telescopes fiber-fed to a KiwiSpec spectrograph. The MINERVA mission is to discover super-Earths in the habitable zones of nearby stars. This can be accomplished with MINERVA’s unique combination of high precision and high cadence over long time periods. In this work, we detail changes to the MINERVA facility that have occurred since our previous paper. We then describe MINERVA’s robotic control software, the process by which we perform 1D spectral extraction, and our forward modeling Doppler pipeline. In the process of improving our forward modeling procedure, we found that our spectrograph’s intrinsic instrumental profile is stable for at least nine months. Because of that, we characterized our instrumental profile with a time-independent, cubic spline function based on the profile in the cross dispersion direction, with which we achieved a radial velocity precision similar to using a conventional “sum-of-Gaussians” instrumental profile: 1.8 m s−1 over 1.5 months on the RV standard star HD 122064. Therefore, we conclude that the instrumental profile need not be perfectly accurate as long as it is stable. In addition, we observed 51 Peg and our results are consistent with the literature, confirming our spectrograph and Doppler pipeline are producing accurate and precise radial velocities.

[1]  Jason T. Wright,et al.  KELT-24b: A 5MJ Planet on a 5.6 day Well-aligned Orbit around the Young V = 8.3 F-star HD 93148 , 2019, The Astronomical Journal.

[2]  Jason D. Eastman,et al.  Minerva-Australis. I. Design, Commissioning, and First Photometric Results , 2019, Publications of the Astronomical Society of the Pacific.

[3]  R. Paul Butler,et al.  Commissioning the SALT High Resolution Spectrograph’s iodine cell , 2018, Astronomical Telescopes + Instrumentation.

[4]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[5]  Jason T. Wright,et al.  KELT-22Ab: A Massive, Short-Period Hot Jupiter Transiting a Near-solar Twin , 2018, The Astrophysical Journal Supplement Series.

[6]  Paul Robertson,et al.  The Third Workshop on Extremely Precise Radial Velocities: The New Instruments , 2017, 1801.05383.

[7]  Keivan G. Stassun,et al.  KELT-19Ab: A P ∼ 4.6-day Hot Jupiter Transiting a Likely Am Star with a Distant Stellar Companion , 2017, 1709.07010.

[8]  Keivan G. Stassun,et al.  KELT-20b: A Giant Planet with a Period of P ∼ 3.5 days Transiting the V ∼ 7.6 Early A Star HD 185603 , 2017, 1707.01518.

[9]  I. Czekala PSOAP: Precision Spectroscopic Orbits A-Parametrically , 2017 .

[10]  Samson A. Johnson,et al.  The Mysterious Dimmings of the T Tauri Star V1334 Tau , 2017, 1701.03044.

[11]  Keivan G. Stassun,et al.  KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V = 8 Subgiant HD 93396 , 2016, 1607.01755.

[12]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[13]  A. Collier Cameron,et al.  The Sun as a planet-host star: proxies from SDO images for HARPS radial-velocity variations , 2016, 1601.05651.

[14]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[15]  J. Eastman,et al.  Multiwavelength Transit Observations of the Candidate Disintegrating Planetesimals Orbiting WD 1145+017 , 2015, 1510.06434.

[16]  Jason T. Wright,et al.  A disintegrating minor planet transiting a white dwarf , 2015, Nature.

[17]  Rebecca A. Bernstein,et al.  Data Reduction with the MIKE Spectrometer , 2015, 1506.08864.

[18]  Christian Schwab,et al.  AN EFFICIENT, COMPACT, AND VERSATILE FIBER DOUBLE SCRAMBLER FOR HIGH PRECISION RADIAL VELOCITY INSTRUMENTS , 2015, 1505.07463.

[19]  Stuart I. Barnes,et al.  Miniature Exoplanet Radial Velocity Array I: design, commissioning, and early photometric results , 2014, 1411.3724.

[20]  J. Eastman,et al.  Barycentric Corrections at 1 cm s-1 for Precise Doppler Velocities , 2014, 1409.4774.

[21]  London,et al.  Flat-relative optimal extraction A quick and efficient algorithm for stabilised spectrographs , 2013, 1311.5263.

[22]  Marco Bonati,et al.  CHIRON—A Fiber Fed Spectrometer for Precise Radial Velocities , 2013, 1309.3971.

[23]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[24]  Christoph Baranec,et al.  The Robo-AO software: fully autonomous operation of a laser guide star adaptive optics and science system , 2012, Other Conferences.

[25]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[26]  D. Queloz,et al.  The HARPS search for Earth-like planets in the habitable zone - I. Very low-mass planets around HD 20794, HD 85512, and HD 192310 , 2011, 1108.3447.

[27]  Z. Malkin Study of astronomical and geodetic series using the Allan variance , 2011, 1105.3837.

[28]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[29]  Howard Isaacson,et al.  CHROMOSPHERIC ACTIVITY AND JITTER MEASUREMENTS FOR 2630 STARS ON THE CALIFORNIA PLANET SEARCH , 2010, 1009.2301.

[30]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[31]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[32]  Joshua N. Winn,et al.  Transits and Occultations , 2010, 1001.2010.

[33]  S. Roweis,et al.  ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES , 2009, 0910.2233.

[34]  J. Valenti,et al.  THE NASA-UC ETA-EARTH PROGRAM. I. A SUPER-EARTH ORBITING HD 7924 , 2009, 0901.4394.

[35]  C. Tinney,et al.  The impact of stellar oscillations on doppler velocity planet searches , 2007, 0706.3548.

[36]  R. P. Butler,et al.  Catalog of Nearby Exoplanets , 2006, astro-ph/0607493.

[37]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[38]  J. Wright,et al.  Radial Velocity Jitter in Stars from the California and Carnegie Planet Search at Keck Observatory , 2005, astro-ph/0505214.

[39]  Jason T. Wright,et al.  Chromospheric Ca II Emission in Nearby F, G, K, and M Stars , 2004, astro-ph/0402582.

[40]  Jozsef Lazar,et al.  System Description and First Light Curves of the Hungarian Automated Telescope, an Autonomous Observatory for Variability Search , 2002, astro-ph/0206001.

[41]  J. Valenti,et al.  New algorithms for reducing cross-dispersed echelle spectra , 2002 .

[42]  Robert A. Donahue,et al.  Activity-Related Radial Velocity Variation in Cool Stars , 1997 .

[43]  R. P. Butler,et al.  ATTAINING DOPPLER PRECISION OF 3 M S-1 , 1996 .

[44]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[45]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[46]  R. P. Butler,et al.  DETERMINING SPECTROMETER INSTRUMENTAL PROFILES USING FTS REFERENCE SPECTRA , 1995 .

[47]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[48]  David D. Walker,et al.  Final tests and commissioning of the UCL echelle spectrograph , 1990, Astronomical Telescopes and Instrumentation.

[49]  T. Mazeh,et al.  The unseen companion of HD114762: a probable brown dwarf , 1989, Nature.

[50]  Gordon A. H. Walker,et al.  A search for substellar companions to solar-type stars , 1988 .

[51]  Steven S. Vogt,et al.  THE LICK OBSERVATORY HAMILTON ECHELLE SPECTROMETER. , 1987 .

[52]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[53]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .