Nonparametric Bayesian inference in applications

Nonparametric Bayesian (BNP) inference is concerned with inference for infinite dimensional parameters, including unknown distributions, families of distributions, random mean functions and more. Better computational resources and increased use of massive automated or semi-automated data collection makes BNP models more and more common. We briefly review some of the main classes of models, with an emphasis on how they arise from applied research questions, and focus in more depth only on BNP models for spatial inference as a good example of a class of inference problems where BNP models can successfully address limitations of parametric inference.

[1]  B. Vidakovic Nonlinear wavelet shrinkage with Bayes rules and Bayes factors , 1998 .

[2]  Sonia Petrone,et al.  An enriched conjugate prior for Bayesian nonparametric inference , 2011 .

[3]  B. Mallick,et al.  A Bayesian Semiparametric Accelerated Failure Time Model , 1999, Biometrics.

[4]  W. Ewens The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.

[5]  Yee Whye Teh,et al.  Stick-breaking Construction for the Indian Buffet Process , 2007, AISTATS.

[6]  Fernando A. Quintana,et al.  Nonparametric Bayesian data analysis , 2004 .

[7]  Michael I. Jordan,et al.  Feature allocations, probability functions, and paintboxes , 2013, 1301.6647.

[8]  M. Clyde,et al.  Flexible empirical Bayes estimation for wavelets , 2000 .

[9]  Abdus S Wahed,et al.  Bayesian Nonparametric Estimation for Dynamic Treatment Regimes With Sequential Transition Times , 2014, Journal of the American Statistical Association.

[10]  Matteo Ruggiero,et al.  Are Gibbs-Type Priors the Most Natural Generalization of the Dirichlet Process? , 2015, IEEE transactions on pattern analysis and machine intelligence.

[11]  F. Quintana,et al.  Bayesian clustering and product partition models , 2003 .

[12]  Michael I. Jordan,et al.  Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes , 2008, NIPS.

[13]  Raffaele Argiento,et al.  A blocked Gibbs sampler for NGG-mixture models via a priori truncation , 2016, Stat. Comput..

[14]  Timothy Hanson,et al.  Surviving fully Bayesian nonparametric regression models , 2012 .

[15]  J. Berger,et al.  Bayesian and Conditional Frequentist Testing of a Parametric Model Versus Nonparametric Alternatives , 2001 .

[16]  Michael I. Jordan,et al.  Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.

[17]  A. Gelfand,et al.  Hybrid Dirichlet mixture models for functional data , 2009 .

[18]  L. Fahrmeir,et al.  PENALIZED STRUCTURED ADDITIVE REGRESSION FOR SPACE-TIME DATA: A BAYESIAN PERSPECTIVE , 2004 .

[19]  M. Lavine More Aspects of Polya Tree Distributions for Statistical Modelling , 1992 .

[20]  Garritt L. Page,et al.  Spatial Species Sampling and Product Partition Models , 2015 .

[21]  N. Hjort Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .

[22]  Peter Müller,et al.  A Nonparametric Bayesian Model for Local Clustering With Application to Proteomics , 2013, Journal of the American Statistical Association.

[23]  Nicholas J. Foti,et al.  A Survey of Non-Exchangeable Priors for Bayesian Nonparametric Models , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  W. Johnson,et al.  A Bayesian Semiparametric AFT Model for Interval-Censored Data , 2004 .

[25]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[26]  Antonio Lijoi,et al.  Bayesian Nonparametrics: Models beyond the Dirichlet process , 2010 .

[27]  Riten Mitra,et al.  Bayesian Nonparametric Inference - Why and How. , 2013, Bayesian analysis.

[28]  Montserrat Fuentes,et al.  Multivariate spatial nonparametric modelling via kernel processes mixing. , 2013, Statistica Sinica.

[29]  Y. Teh,et al.  MCMC for Normalized Random Measure Mixture Models , 2013, 1310.0595.

[30]  F. Quintana A predictive view of Bayesian clustering , 2006 .

[31]  J. Pitman Some developments of the Blackwell-MacQueen urn scheme , 1996 .

[32]  Tamara Broderick,et al.  Exchangeable Trait Allocations , 2016, 1609.09147.

[33]  David B Dunson,et al.  Nonparametric Bayesian models through probit stick-breaking processes. , 2011, Bayesian analysis.

[34]  Peter Müller,et al.  A Product Partition Model With Regression on Covariates , 2011, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[35]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[36]  Purushottam W. Laud,et al.  A Bayesian Nonparametric Approach to Reliability , 1981 .

[37]  Aad van der Vaart,et al.  Fundamentals of Nonparametric Bayesian Inference , 2017 .

[38]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[39]  Stephen G. Walker,et al.  Markov beta and gamma processes for modelling hazard rates , 2002 .

[40]  L. Held,et al.  Gaussian Markov Random Fields: Theory And Applications (Monographs on Statistics and Applied Probability) , 2005 .

[41]  Yee Whye Teh,et al.  Sharing Clusters among Related Groups: Hierarchical Dirichlet Processes , 2004, NIPS.

[42]  T. Ferguson,et al.  Bayesian Nonparametric Estimation Based on Censored Data , 1979 .

[43]  S. Dalal Dirichlet invariant processes and applications to nonparametric estimation of symmetric distribution functions , 1979 .

[44]  Raffaele Argiento,et al.  Bayesian density estimation and model selection using nonparametric hierarchical mixtures , 2010, Comput. Stat. Data Anal..

[45]  Brian J. Reich,et al.  A MULTIVARIATE SEMIPARAMETRIC BAYESIAN SPATIAL MODELING FRAMEWORK FOR HURRICANE SURFACE WIND FIELDS , 2007, 0709.0427.

[46]  Garritt L. Page,et al.  Spatial Product Partition Models , 2015, 1504.04489.

[47]  P. Müller,et al.  Random Partition Models with Regression on Covariates. , 2010, Journal of statistical planning and inference.

[48]  D. Barry,et al.  Bayesian disease mapping using product partition models , 2008, Statistics in medicine.

[49]  Montserrat Fuentes,et al.  Nonparametric Bayesian models for a spatial covariance. , 2012, Statistical methodology.

[50]  P. Müller,et al.  Defining Predictive Probability Functions for Species Sampling Models. , 2013, Statistical science : a review journal of the Institute of Mathematical Statistics.

[51]  D. B. Dahl Bayesian Inference for Gene Expression and Proteomics: Model-Based Clustering for Expression Data via a Dirichlet Process Mixture Model , 2006 .

[52]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[53]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[54]  Veerabhadran Baladandayuthapani,et al.  Spatially Adaptive Bayesian Penalized Regression Splines (P-splines) , 2005 .

[55]  Dipankar Bandyopadhyay,et al.  A Nonparametric Spatial Model for Periodontal Data With Nonrandom Missingness , 2013, Journal of the American Statistical Association.

[56]  Robert B. Gramacy,et al.  Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .

[57]  Montserrat Fuentes,et al.  Nonparametric spatial models for extremes: application to extreme temperature data , 2013, Extremes.

[58]  Yuan Ji,et al.  A Bayesian feature allocation model for tumor heterogeneity , 2015, 1509.04026.

[59]  Peter Müller,et al.  DPpackage: Bayesian Semi- and Nonparametric Modeling in R , 2011 .

[60]  A. Lijoi,et al.  Modeling with normalized random measure mixture models , 2013, 1310.0260.

[61]  S. Walker,et al.  Beta-Stacy processes and a generalization of the Polya urn scheme , 1997 .

[62]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[63]  A. Branscum,et al.  A Bayesian Goodness of Fit Test and Semiparametric Generalization of Logistic Regression with Measurement Data , 2013, Biometrics.

[64]  P. Müller,et al.  Bayesian curve fitting using multivariate normal mixtures , 1996 .

[65]  Soumya Ghosh,et al.  Spatial distance dependent Chinese restaurant processes for image segmentation , 2011, NIPS.

[66]  Lorenzo Trippa,et al.  Dependent Species Sampling Models for Spatial Density Estimation , 2017 .

[67]  H. Chipman,et al.  Adaptive Bayesian Wavelet Shrinkage , 1997 .

[68]  Albert Y. Lo,et al.  On a Class of Bayesian Nonparametric Estimates: I. Density Estimates , 1984 .

[69]  S. MacEachern,et al.  Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .

[70]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[71]  Jason A. Duan,et al.  Generalized spatial dirichlet process models , 2007 .

[72]  F. Quintana,et al.  Nonparametric Bayesian modelling using skewed Dirichlet processes , 2009 .

[73]  A. Gelfand,et al.  The Nested Dirichlet Process , 2008 .

[74]  Lancelot F. James,et al.  Posterior Analysis for Normalized Random Measures with Independent Increments , 2009 .

[75]  Peter F Thall,et al.  A Decision-Theoretic Comparison of Treatments to Resolve Air Leaks After Lung Surgery Based on Nonparametric Modeling. , 2015, Bayesian analysis.

[76]  A. Gelfand,et al.  Bayesian Semiparametric Median Regression Modeling , 2001 .

[77]  Ramsés H. Mena,et al.  Controlling the reinforcement in Bayesian non‐parametric mixture models , 2007 .

[78]  Eswar G. Phadia Prior Processes and Their Applications , 2013 .

[79]  T. Kneib,et al.  BayesX: Analyzing Bayesian Structural Additive Regression Models , 2005 .

[80]  Harry Crane,et al.  The Ubiquitous Ewens Sampling Formula , 2016 .

[81]  A. Lijoi,et al.  Distributional results for means of normalized random measures with independent increments , 2003 .

[82]  W. Johnson,et al.  Modeling Regression Error With a Mixture of Polya Trees , 2002 .

[83]  Sylvia Richardson,et al.  Bayesian non‐parametric models for spatially indexed data of mixed type , 2014, 1408.1368.

[84]  A. Lijoi,et al.  Bayesian inference with dependent normalized completely random measures , 2014, 1407.0482.