Adaptive Multiple Component Metric Learning for Robust Visual Tracking

In this paper, we present a new robust visual tracking approach that incorporates an adaptive metric learning in a multiple components framework. Using a similar overall approach to other state-of-the-art tracking methods, which pose object tracking as a binary classification problem, we firstly employ a new feature selection mechanism based on adaptive metric learning for constructing a discriminative target appearance model and then propose a scheme to update the appearance model in a Multiple Component Learning boosting manner, which automatically learns individual component classifiers and combines these into an overall classifier. Experiments on several challenging benchmark video sequences demonstrate the effectiveness and robustness of our proposed method.

[1]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[3]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[4]  Yuan Xie,et al.  Online multiple instance gradient feature selection for robust visual tracking , 2012, Pattern Recognit. Lett..

[5]  Pietro Perona,et al.  Multiple Component Learning for Object Detection , 2008, ECCV.

[6]  Nan Jiang,et al.  Learning Adaptive Metric for Robust Visual Tracking , 2011, IEEE Transactions on Image Processing.

[7]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Ming-Hsuan Yang,et al.  An experimental comparison of online object-tracking algorithms , 2011, Optical Engineering + Applications.

[9]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[10]  Ivan Laptev,et al.  Improvements of Object Detection Using Boosted Histograms , 2006, BMVC.

[11]  Huchuan Lu,et al.  Human Tracking by Multiple Kernel Boosting with Locality Affinity Constraints , 2010, ACCV.

[12]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Luc Van Gool,et al.  Coupled Object Detection and Tracking from Static Cameras and Moving Vehicles , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Paul A. Viola,et al.  Multiple Instance Boosting for Object Detection , 2005, NIPS.

[15]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[16]  Pietro Perona,et al.  A sparse object category model for efficient learning and exhaustive recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Nikunj C. Oza,et al.  Online Ensemble Learning , 2000, AAAI/IAAI.

[18]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[19]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[20]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[21]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[22]  Fatih Murat Porikli,et al.  Integral histogram: a fast way to extract histograms in Cartesian spaces , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[23]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.