Biological activity of entomopathogenic actinomycetes against lepidopteran insects (Noctuidae: Lepidoptera)

Vijayabharathi, R., Kumari, B. R., Sathya, A., Srinivas, V., Abhishek, R., Sharma, H. C. and Gopalakrishnan, S. 2014. Biological activity of entomopathogenic actinomycetes against lepidopteran insects (Noctuidae: Lepidoptera). Can. J. Plant Sci. 94: 759–769. The aim of the present study was to identify an efficient broad-spectrum bio-pesticide for the control of lepidopteran insects from microbes in various ecological niches. A total of 111 microbes isolated from various herbal vermi-composts and organically cultivated fields were evaluated for their intracellular metabolites (ICM), extracellular metabolites (ECM) and whole culture (WC) against early instars of lepidopteran insects. Fifteen actinomycete isolates which showed insecticidal activity against 2nd instar Helicoverpa armigera were selected and further screened against Spodoptera litura and Chilo partellus. A significant broad spectrum insecticidal activity was found in the order ECM>ICM>WC against all the insects under laboratory conditions. All...

[1]  Yu-rong He,et al.  Entomopathogenic fungi disturbed the larval growth and feeding performance of Ocinara varians (Lepidoptera: Bombycidae) larvae , 2009 .

[2]  B N SMALLMAN,et al.  PESTICIDES AND PEST CONTROL. , 1964, Canadian journal of public health = Revue canadienne de sante publique.

[3]  M. Nair,et al.  Insecticidal and nematicidal properties of microbial metabolites , 1987, Journal of Industrial Microbiology.

[4]  J Li,et al.  Streptomyces sp. 173, an insecticidal micro‐organism from marine , 2004, Letters in applied microbiology.

[5]  Jiang-chun Hu,et al.  Screening for marine actinomycetes producing insecticidal metabolites , 2008 .

[6]  H. Sharma,et al.  Mechanisms of resistance to Helicoverpa armigera and introgression of resistance genes into F1 hybrids in chickpea , 2007, Arthropod-Plant Interactions.

[7]  N. Mathivanan,et al.  Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes , 2009 .

[8]  F Bigler,et al.  Biological control and sustainable food production , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  R. Coelho,et al.  Antimicrobial and antiviral activities of an actinomycete (Streptomyces sp.) isolated from a Brazilian tropical forest soil , 2004 .

[10]  A. Panneerselvam,et al.  PRELIMINARY EVALUATION OF ANOPHELES MOSQUITO LARVICIDAL EFFICACY OF MANGROVE ACTINOBACTERIA , 2010 .

[11]  Mohammed,et al.  Insect Control Using Chitinolytic Soil Actinomycetes as Biocontrol Agents , 2008 .

[12]  Sun-Ju Kim,et al.  Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp. AP-123 against Helicoverpa armigera and Spodoptera litura , 2013, BMC Microbiology.

[13]  S. Kang,et al.  Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica , 2005 .

[14]  Rajinder Peshin,et al.  Integrated Pest Management: Innovation-Development Process , 2009 .

[15]  D. Heckel,et al.  Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of cotton. , 2002, Journal of invertebrate pathology.

[16]  M. Arasu,et al.  Antimicrobial activity of Streptomyces spp. ERI-26 recovered from Western Ghats of Tamil Nadu , 2008 .

[17]  S. Ibrahim,et al.  Studies on antifungal antibiotic and bioinsecticidal activities of some actinomycete isolates , 2002 .

[18]  H. Sharma Heliothis/ Helicoverpa Management : The Emerging Trends and Need for Future Research , 2005 .

[19]  S. Ibrahim,et al.  Insecticidal activity of selected actinomycete strains against the Egyptian cotton leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae). , 2001, Mededelingen.

[20]  Sheng Qin,et al.  Insecticidal action of Quinomycin A from Streptomyces sp. KN-0647, isolated from a forest soil , 2008 .

[21]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[22]  D. Cooper The application of a model to achieve predicted mortality in a field trial using Bacillus thuringiensis to control Heliothis punctiger , 1984 .

[23]  R. Subramani,et al.  Marine actinomycetes: an ongoing source of novel bioactive metabolites. , 2012, Microbiological research.

[24]  H. Sharma,et al.  Techniques to Screen Sorghums for Resistance to Insect Pests , 1992 .

[25]  K. Hong,et al.  Actinomycetes for Marine Drug Discovery Isolated from Mangrove Soils and Plants in China , 2009, Marine drugs.

[26]  J. Wightman,et al.  Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, India , 1997 .

[27]  R. Fani,et al.  The use of RAPD for generating specific DNA probes for microorganisms. , 1996, Methods in molecular biology.

[28]  William Fenical,et al.  Cyclomarins A−C, New Antiinflammatory Cyclic Peptides Produced by a Marine Bacterium (Streptomyces sp.) , 1999 .

[29]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[30]  Pourmirza Ali Asghar,et al.  Effect of spinosad on adults of Tribolium castaneum (Col: Tenebrionidae) and Sitophilus oryzae (Col: Curculionidae). , 2007, Pakistan journal of biological sciences : PJBS.

[31]  R. Cooter,et al.  The laboratory culture and development of Helicoverpa armigera , 1992 .

[32]  János Bérdy,et al.  Bioactive microbial metabolites. , 2005, The Journal of antibiotics.

[33]  C. Ireland,et al.  Anti-Parasitic Compounds from Streptomyces sp. Strains Isolated from Mediterranean Sponges , 2010, Marine drugs.

[34]  J. Frisvad The use of high‐performance liquid chromatography and diode array detection in fungal chemotaxonomy based on profiles of secondary metabolites , 1989 .

[35]  M. Chen,et al.  Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae) a new invasive species in Israel , 2013 .

[36]  S. Duke,et al.  Natural products for pest management , 2006 .

[37]  J. Vandenberg,et al.  Dose–Response and Age- and Temperature-Related Susceptibility of the Diamondback Moth (Lepidoptera: Plutellidae) to Two Isolates of Beauveria bassiana (Hyphomycetes: Moniliaceae) , 1998 .

[38]  T. Basedow,et al.  Evaluation of bio-rational insecticides to control Helicoverpa armigera (Hübner) and Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) fed on Vicia faba L. , 2006 .

[39]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[40]  Stephen O Duke,et al.  Natural products that have been used commercially as crop protection agents. , 2007, Pest management science.

[41]  N. Singh.,et al.  Insecticidal genes and their potential in developing transgenic crops for resistance to Heliothis/Helicoverpa. , 2005 .

[42]  B. Griffiths,et al.  Effect of organic, conventional and mixed cultivation practices on soil microbial community structure and nematode abundance in a cultivated onion crop. , 2013, Journal of the science of food and agriculture.

[43]  C. Gualerzi,et al.  Targets and assays for discovering novel antibacterial agents. , 2002, Journal of biotechnology.

[44]  S. Gopalakrishnan,et al.  Efficacy of botanical extracts and entomopathogens on control of Helicoverpa armigera and Spodoptera litura , 2011 .

[45]  L. Copping,et al.  Biopesticides: a review of their action, applications and efficacy , 2000 .

[46]  R. Prasanna,et al.  Characterization of the Biocidal Spectrum of Extracellular Filtrates of Microcystis aeruginosa , 2011, Indian Journal of Microbiology.

[47]  S Omura,et al.  Agroactive compounds of microbial origin. , 1993, Annual review of microbiology.