Central limit theorem and large deviations of the fading Wyner cellular model via product of random matrices theory

AbstractWe apply the theory of products of random matrices to the analysis of multi-user communication channels similar to the Wyner model, which are characterized by short-range intra-cell broadcasting. We study fluctuations of the per-cell sum-rate capacity in the non-ergodic regime and provide results of the type of the central limit theorem (CLT) and large deviations (LD). Our results show that CLT fluctuations of the per-cell sum-rate Cm are of order $$ 1/\sqrt m $$, where m is the number of cells, whereas they are of order 1/m in classical random matrix theory. We also show an LD regime of the form P(|Cm − C| > ɛ) ≤ e−mα with α = α(ɛ) > 0 and C = $$ \mathop {\lim }\limits_{m \to \infty } $$Cm, as opposed to the rate $$ e^{ - m^2 \alpha } $$ in classical random matrix theory.

[1]  Henryk Iwaniec The distribution of eigenvalues , 2002 .

[2]  Hubert Hennion Loi des grands nombres et perturbations pour des produits réductibles de matrices aléatoires indépendantes , 1984 .

[3]  Shlomo Shamai,et al.  Sum Rate Characterization of Joint Multiple Cell-Site Processing , 2007, IEEE Transactions on Information Theory.

[4]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[5]  P. Bougerol,et al.  Products of Random Matrices with Applications to Schrödinger Operators , 1985 .

[6]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[7]  A. Guionnet,et al.  CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .

[8]  Honglin Hu,et al.  Distributed Antenna Systems: Open Architecture for Future Wireless Communications , 2007 .

[9]  Philippe Loubaton,et al.  A CLT FOR INFORMATION-THEORETIC STATISTICS OF GRAM RANDOM MATRICES WITH A GIVEN VARIANCE PROFILE , 2007, 0706.0166.

[10]  École d'été de probabilités de Saint-Flour,et al.  École d'Été de Probabilités de Saint-Flour XII - 1982 , 1984 .

[12]  Shlomo Shamai,et al.  On Certain Large Random Hermitian Jacobi Matrices With Applications to Wireless Communications , 2009, IEEE Transactions on Information Theory.

[13]  Shlomo Shamai,et al.  Information theoretic considerations for cellular mobile radio , 1994 .

[14]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[15]  Alexander Figotin,et al.  Spectra of Random and Almost-Periodic Operators , 1991 .

[16]  Shlomo Shamai,et al.  On Information Rates of the Fading Wyner Cellular Model via the Thouless Formula for the Strip , 2010, IEEE Transactions on Information Theory.

[17]  R. Tennant Algebra , 1941, Nature.

[18]  Aaron D. Wyner,et al.  Shannon-theoretic approach to a Gaussian cellular multiple-access channel , 1994, IEEE Trans. Inf. Theory.

[19]  Shlomo Shamai,et al.  Cooperative Multi-Cell Networks: Impact of Limited-Capacity Backhaul and Inter-Users Links , 2007, ArXiv.

[20]  Shlomo Shamai,et al.  An information theoretic view of distributed antenna processing in cellular systems , 2007 .

[21]  Shlomo Shamai,et al.  Fading channels (invited paper): information-theoretic and communications aspects , 2000 .

[22]  F. Ledrappier Quelques proprietes des exposants caracteristiques , 1984 .

[23]  R. Carmona,et al.  Spectral Theory of Random Schrödinger Operators , 1990 .

[24]  Shlomo Shamai,et al.  On Certain Large Random Hermitian Jacobi Matrices With Applications to Wireless Communications , 2009, IEEE Trans. Inf. Theory.