The ARMA model in state space form

[1]  Jeremy Penzer,et al.  Diagnosing Shocks in Time Series , 1998 .

[2]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[3]  S. Koopman,et al.  Disturbance smoother for state space models , 1993 .

[4]  R. Fildes Forecasting structural time series models and the kalman filter: Andrew Harvey, 1989, (Cambridge University Press), 554 pp., ISBN 0-521-32196-4 , 1992 .

[5]  P. D. Jong The Diffuse Kalman Filter , 1991 .

[6]  R. Kohn,et al.  A fast algorithm for signal extraction, influence and cross-validation in state space models , 1989 .

[7]  Piet de Jong,et al.  A cross-validation filter for time series models , 1988 .

[8]  Piet de Jong,et al.  The likelihood for a state space model , 1988 .

[9]  P. Whittle Prediction and Regulation by Linear Least-Square Methods , 1983 .

[10]  A. Harvey Time series models , 1983 .

[11]  C. Ansley,et al.  The Signal Extraction Approach to Nonlinear Regression and Spline Smoothing , 1983 .

[12]  B. Anderson,et al.  Optimal Filtering , 1979 .

[13]  Andrew Harvey,et al.  Maximum likelihood estimation of regression models with autoregressive-moving average disturbances , 1979 .

[14]  Barr Rosenberg,et al.  The Analysis of a Cross-Section of Time Series by Stochastically Convergent Parameter Regression , 1973 .

[15]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[16]  Kenneth F. Wallis,et al.  Prediction theory for autoregressivemoving average processes , 1998 .

[17]  Neville Davies,et al.  Time Series Models, 2nd Edn. , 1995 .

[18]  J. Pearlman An algorithm for the exact likelihood of a high-order autoregressive-moving average process , 1980 .

[19]  Fred C. Schweppe,et al.  Evaluation of likelihood functions for Gaussian signals , 1965, IEEE Trans. Inf. Theory.

[20]  P. Whittle,et al.  Prediction and Regulation. , 1965 .

[21]  Michael Bretherton,et al.  Prediction and Regulation by Linear Least-Square Methods , 1964 .