An explosive gas recognition system using neural networks
暂无分享,去创建一个
In this paper, we have implemented a gas recognition system for classification and identification of explosive gases such as methane, propane, and butane using a sensor array and an artificial neural network. Such explosive gases which can be usually detected in the oil factory and LPG pipeline are very dangerous for a human being. We analyzed the characteristics of a multi-dimensional sensor signals obtained from the nine sensors using the principal component analysis(PCA) technique. Also, we implemented a gas pattern recognizer using a multi-layer neural network with error back propagation learning algorithm, which can classify and identify the sorts of gases and concentrations for each gas. The simulation and experimental results show that the proposed gas recognition system is effective to identify the explosive gases. And also, we used DSP board(TMS320C31) to implement the proposed gas recognition system using the neural network for real time processing.