On Parameterized Independent Feedback Vertex Set

We investigate a generalization of the classical Feedback Vertex Set (FVS) problem from the point of view of parameterized algorithms. Independent Feedback Vertex Set (IFVS) is the "independent" variant of the FVS problem and is defined as follows: given a graph G and an integer k, decide whether there exists F ⊆ V (G), |F| ≤ k, such that G[V (G) \F] is a forest and G[F] is an independent set; the parameter is k. Note that the similarly parameterized versions of the FVS problem -- where there is no restriction on the graph G[F] -- and its connected variant CFVS -- where G[F] is required to be connected -- have been extensively studied in the literature. The FVS problem easily reduces to the IFVS problem in a manner that preserves the solution size, and so any algorithmic result for IFVS directly carries over to FVS. We show that IFVS can be solved in time O(5k nO(1)) time where n is the number of vertices in the input graph G, and obtain a cubic O(k3)) kernel for the problem. Note the contrast with the CFVS problem, which does not admit a polynomial kernel unless CoNP ⊆ NP/Poly.

[1]  Stefan Szeider,et al.  A probabilistic approach to problems parameterized above or below tight bounds , 2009, J. Comput. Syst. Sci..

[2]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[3]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[4]  Saket Saurabh,et al.  Linear Kernel for Planar Connected Dominating Set , 2009, TAMC.

[5]  Stéphan Thomassé A quadratic kernel for feedback vertex set , 2009, SODA.

[6]  Stefan Kratsch Polynomial Kernelizations for MIN F+Pi1 and MAX NP , 2009, STACS.

[7]  Hans L. Bodlaender,et al.  On Disjoint Cycles , 1991, Int. J. Found. Comput. Sci..

[8]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[9]  Hans L. Bodlaender,et al.  Kernelization: New Upper and Lower Bound Techniques , 2009, IWPEC.

[10]  Barry O'Sullivan,et al.  Treewidth Reduction for Constrained Separation and Bipartization Problems , 2009, STACS.

[11]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[12]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[13]  Panos M. Pardalos,et al.  Feedback Set Problems , 1999, Handbook of Combinatorial Optimization.

[14]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[15]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[16]  Samir Khuller,et al.  Approximation Algorithms for Connected Dominating Sets , 1996, Algorithmica.

[17]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.

[18]  Fabrizio Grandoni,et al.  Solving Connected Dominating Set Faster than 2 n , 2006, Algorithmica.

[19]  Noga Alon,et al.  Solving MAX-r-SAT Above a Tight Lower Bound , 2010, SODA '10.

[20]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[21]  Barry O'Sullivan,et al.  A fixed-parameter algorithm for the directed feedback vertex set problem , 2008, STOC.

[22]  Geevarghese Philip,et al.  FPT Algorithms for Connected Feedback Vertex Set , 2010, WALCOM.

[23]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[24]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2008, J. Comput. Syst. Sci..

[25]  G DowneyRod,et al.  Fixed-Parameter Tractability and Completeness I , 1995 .

[26]  Rolf Niedermeier,et al.  A Generalization of Nemhauser and Trotter's Local Optimization Theorem , 2009, STACS.

[27]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..