Kerr black hole shadow from axion-photon coupling

We have investigated birefringence of photons in a Kerr black hole spacetime arising from axion-photon coupling and find that only the propagation of extraordinary rays depends on the coupling. We further study the shadow casted by the extraordinary lights and find that the axion-photon coupling yields a stretching or squeezing in the vertical direction. Such deformation becomes more heavy with the increasing black hole's spin parameter. The size of shadow slightly increases with the coupling strengthen. There also exists mirror symmetry between two shadows whose coupling parameters are opposite number each other in the non-rotating case, but the mirror symmetry gradually disappears with the increasing spin parameter. In the strong coupling case, there exist some self-similar fractal structures in the black hole shadow due to chaotic lensing. These features arising from axion-photon coupling could help us to understand deeply axion field and black hole shadows.

[1]  Jiliang Jing,et al.  Kerr black hole shadow casted by the extraordinary light rays with Weyl corrections , 2023, 2308.16479.

[2]  Jiliang Jing,et al.  Black hole images: A review , 2022, Science China Physics, Mechanics & Astronomy.

[3]  Kaishu Saito,et al.  Observing axions through photon ring dimming of black holes , 2022, Physical Review D.

[4]  F. Hajkarim,et al.  Probing axions via light circular polarization and event horizon telescope , 2022, Journal of Cosmology and Astroparticle Physics.

[5]  E. Liang,et al.  QED and accretion flow models effect on optical appearance of Euler–Heisenberg black holes , 2022, The European Physical Journal C.

[6]  Yu-Dai Tsai,et al.  Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A ∗ , 2022, Classical and Quantum Gravity.

[7]  Jiliang Jing,et al.  Chaotic shadows of black holes: a short review , 2022, Communications in Theoretical Physics.

[8]  Jiliang Jing,et al.  Polarization distribution in the image of a synchrotron emitting ring around a regular black hole , 2022, Science China Physics, Mechanics & Astronomy.

[9]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric , 2022, The Astrophysical Journal Letters.

[10]  Bin Chen,et al.  QED effects on Kerr black hole shadows immersed in uniform magnetic fields , 2021, Physical Review D.

[11]  Jiliang Jing,et al.  Polarized image of a Schwarzschild black hole with a thin accretion disk as photon couples to Weyl tensor , 2021, The European Physical Journal C.

[12]  O. Tsupko,et al.  Calculating black hole shadows: Review of analytical studies , 2021, Physics Reports.

[13]  A. Gußmann Polarimetric signatures of the photon ring of a black hole that is pierced by a cosmic axion string , 2021, Journal of High Energy Physics.

[14]  R. Lu,et al.  Stringent axion constraints with Event Horizon Telescope polarimetric measurements of M87⋆ , 2021, Nature Astronomy.

[15]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VII. Polarization of the Ring , 2021, The Astrophysical Journal Letters.

[16]  Bin Chen,et al.  QED effect on a black hole shadow , 2020, Physical Review D.

[17]  Yu-Xiao Liu,et al.  Testing the nature of Gauss–Bonnet gravity by four-dimensional rotating black hole shadow , 2020, The European Physical Journal Plus.

[18]  Yi-Fu Cai,et al.  Testing the equivalence principle via the shadow of black holes , 2019, 1912.12629.

[19]  D. Budker,et al.  Searching for Earth/Solar axion halos , 2019, Journal of High Energy Physics.

[20]  U. Yajnik,et al.  Evolution of black hole shadow in the presence of ultralight bosons , 2019, Physics Letters B.

[21]  Q. Yuan,et al.  Probing Axions with Event Horizon Telescope Polarimetric Measurements. , 2019, Physical review letters.

[22]  K. Toma,et al.  Hunting Axion Dark Matter with Protoplanetary Disk Polarimetry. , 2018, Physical review letters.

[23]  I. Irastorza,et al.  New experimental approaches in the search for axion-like particles , 2018, Progress in Particle and Nuclear Physics.

[24]  Jiliang Jing,et al.  Chaotic shadow of a non-Kerr rotating compact object with quadrupole mass moment , 2018, Physical Review D.

[25]  C. Herdeiro,et al.  Shadows and strong gravitational lensing: a brief review , 2018, General Relativity and Gravitation.

[26]  A. D. Plascencia,et al.  Black hole superradiance and polarization-dependent bending of light , 2017, 1711.08298.

[27]  Jiliang Jing,et al.  Shadows of Bonnor black dihole by chaotic lensing , 2017, 1710.07172.

[28]  M. J. Pivovaroff,et al.  New CAST limit on the axion–photon interaction , 2017, Nature Physics.

[29]  C. Herdeiro,et al.  Chaotic lensing around boson stars and Kerr black holes with scalar hair , 2016, 1609.01340.

[30]  L. Rezzolla,et al.  New method for shadow calculations: Application to parametrized axisymmetric black holes , 2016, 1607.05767.

[31]  Yang Huang,et al.  Double shadow of a regular phantom black hole as photons couple to the Weyl tensor , 2016, 1606.04634.

[32]  C. Herdeiro,et al.  Astrophysical imaging of Kerr black holes with scalar hair , 2016, 1606.04246.

[33]  C. Herdeiro,et al.  Shadows of Kerr black holes with and without scalar hair , 2016, 1605.08293.

[34]  Jake O. Shipley,et al.  Binary black hole shadows, chaotic scattering and the Cantor set , 2016, 1603.04469.

[35]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[36]  C. Herdeiro,et al.  Shadows of Kerr Black Holes with Scalar Hair. , 2015, Physical review letters.

[37]  N. W. Taylor,et al.  What does a binary black hole merger look like? , 2014, 1410.7775.

[38]  M. J. Pivovaroff,et al.  Conceptual design of the International Axion Observatory (IAXO) , 2014, 1401.3233.

[39]  T. Johannsen PHOTON RINGS AROUND KERR AND KERR-LIKE BLACK HOLES , 2013, 1501.02814.

[40]  J. Silk,et al.  Constraints on primordial magnetic fields from CMB distortions in the axiverse , 2013, 1308.0314.

[41]  M. Raue,et al.  First lower limits on the photon-axion-like particle coupling from very high energy gamma-ray observations , 2013, 1302.1208.

[42]  A. Mirizzi,et al.  Stochastic conversions of TeV photons into axion-like particles in extragalactic magnetic fields , 2009, 0911.0015.

[43]  D B Tanner,et al.  SQUID-based microwave cavity search for dark-matter axions. , 2009, Physical review letters.

[44]  A. Mirizzi,et al.  Constraining resonant photon-axion conversions in the early universe , 2009, 0905.4865.

[45]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[46]  E. Witten,et al.  Axions In String Theory , 2006, hep-th/0605206.

[47]  N. Bretón Geodesic structure of the Born-Infeld black hole , 2002 .

[48]  R. Cai Propagation of vacuum polarized photons in topological black hole spacetimes , 1998, gr-qc/9801098.

[49]  G. Shore,et al.  ``Faster than light'' photons and rotating black holes , 1995, gr-qc/9508048.

[50]  T. Yanagida,et al.  Resonant axion-photon conversion in the early universe , 1988 .

[51]  L. Stodolsky,et al.  Mixing of the photon with low-mass particles. , 1988, Physical review. D, Particles and fields.

[52]  Luciano Maiani,et al.  Effects of nearly massless, spin-zero particles on light propagation in a magnetic field , 1986 .

[53]  P. Sikivie Experimental Tests of the "INVISIBLE" Axion , 1983 .

[54]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[55]  I. T. Drummond,et al.  QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons , 1980 .

[56]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way , 2023, 2311.08680.

[57]  Kevin A. Dudevoir,et al.  Event Horizon Telescope Results . I . the Shadow of the Supermassive Black Hole , 2019 .

[58]  Jeff Hecht,et al.  Event horizon , 2011, Nature.

[59]  B. Dewitt,et al.  Black holes (Les astres occlus) , 1973 .

[60]  Chih-Wei L. Huang,et al.  First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon , 2021, The Astrophysical Journal Letters.

[61]  H. T. Cho \faster than Light" Photons in Dilaton Black Hole Spacetimes Typeset Using Revt E X , 2022 .