Hierarchical architecture of WO3 nanosheets by self-assembly of nanorods for photoelectrochemical applications

We reported a facile solvothermal strategy for fabricating hierarchical architectures of WO3 nanosheets with WO3 nanorod branches standing orderly on the nanosheets. An enhanced photoelectrochemical activity is achieved, attributable to the high porosity provided by the hierarchical architecture. The novel 3D nanostructure holds great potential in photocatalysis, concurrent filtration, water purification and chemical sensing.

[1]  Jianbo Sun,et al.  Hydrothermal synthesis of self-assembled hierarchical tungsten oxides hollow spheres and their gas sensing properties. , 2015, ACS applied materials & interfaces.

[2]  B. S. Swain,et al.  Highly Efficient Hybrid Photovoltaics Based on Hyperbranched Three‐Dimensional TiO2 Electron Transporting Materials , 2015, Advanced materials.

[3]  Yaping Zhao,et al.  Controlled fabrication of hierarchical WO3·H2O hollow microspheres for enhanced visible light photocatalysis , 2015 .

[4]  Fan Zuo,et al.  Branched WO3 Nanosheet Array with Layered C3N4 Heterojunctions and CoOx Nanoparticles as a Flexible Photoanode for Efficient Photoelectrochemical Water Oxidation , 2014, Advanced materials.

[5]  L. You,et al.  CdS sensitized 3D hierarchical TiO2/ZnO heterostructure for efficient solar energy conversion , 2014, Scientific Reports.

[6]  Lan Sun,et al.  Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis , 2014 .

[7]  Y. Tong,et al.  Facile electrochemical synthesis of CeO2 hierarchical nanorods and nanowires with excellent photocatalytic activities , 2014 .

[8]  M. Hartmann,et al.  Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. , 2014, Nano letters.

[9]  G. Gigli,et al.  Shape and morphology effects on the electronic structure of TiO(2) nanostructures: from nanocrystals to nanorods. , 2014, ACS applied materials & interfaces.

[10]  Nathan T. Hahn,et al.  Improved Visible Light Harvesting of WO3 by Incorporation of Sulfur or Iodine: A Tale of Two Impurities , 2014 .

[11]  W. Zeng,et al.  Hierarchical WO3 porous microspheres and their sensing properties , 2014, Journal of Materials Science: Materials in Electronics.

[12]  Jianbo Wang,et al.  Self-assembly of KxWO3 nanowires into nanosheets by an oriented attachment mechanism. , 2013, ACS applied materials & interfaces.

[13]  Z. Yin,et al.  Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation , 2013 .

[14]  K. Yong,et al.  A highly efficient light capturing 2D (nanosheet)-1D (nanorod) combined hierarchical ZnO nanostructure for efficient quantum dot sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[15]  Yongcai Qiu,et al.  Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis , 2012, Nano Research.

[16]  Qingwen Li,et al.  Aligned coaxial tungsten oxide-carbon nanotube sheet: a flexible and gradient electrochromic film. , 2012, Chemical communications.

[17]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[18]  Liejin Guo,et al.  Nanostructured WO₃/BiVO₄ heterojunction films for efficient photoelectrochemical water splitting. , 2011, Nano letters.

[19]  H. Bai,et al.  Hierarchically multifunctional TiO(2) nano-thorn membrane for water purification. , 2010, Chemical communications.

[20]  Jiarui Huang,et al.  An unusual zinc substrate-induced self-construction route to various hierarchical architectures of hydrated tungsten oxide. , 2010, Chemical communications.

[21]  M. Dai,et al.  Hierarchical ZnO Nanowire-Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells , 2010 .

[22]  Y. Song,et al.  A Novel Heteronanostructure System: Hierarchical W Nanothorn Arrays on WO3 Nanowhiskers , 2006 .

[23]  Yue Ding,et al.  One-step solution-based catalytic route to fabricate novel alpha-MnO2 hierarchical structures on a large scale. , 2005, Chemical communications.

[24]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.