Modeling the Impact of Bulk Resistivity on Bifacial n-PERT Rear-Junction Solar Cells

This work mainly focuses on modeling the impact of bulk resistivity <inline-formula><tex-math notation="LaTeX">$ \rho_b $</tex-math></inline-formula> on the bifacial <italic>n</italic>-type passivated emitter rear and totally diffused rear-junction (<italic>n</italic>-PERT-RJ) solar cells using Quokka3. Through simulation, under the front illumination, the light-generated excess carrier flow behavior in the bulk is studied. The regulatory function of the rear-junction solar cells’ bulk on the electron flows distributary is discussed. Finally, how the different <inline-formula><tex-math notation="LaTeX">$ \rho_b $</tex-math></inline-formula> values affect the hole-current flow behavior and the FSF performance is revealed. This explains very well the reasons for decreasing short-circuit current <italic>J</italic><sub>SC</sub> because of the low <inline-formula><tex-math notation="LaTeX">$ \rho_b $</tex-math></inline-formula> wafers in <italic>n</italic>-PERT-RJ solar cells. The studies also provide insights on the lowest value of <inline-formula><tex-math notation="LaTeX">$ \rho_b $</tex-math></inline-formula> that can be applied to <italic>n</italic>-PERT-RJ solar cells without the efficiency deterioration. We also simulated the <italic>n</italic>-PERT-RJ solar cell performance and bifaciality when applying different <inline-formula><tex-math notation="LaTeX">$ \rho_b $</tex-math></inline-formula> values under rear illumination. Last but not the least, investigation on how <inline-formula><tex-math notation="LaTeX">$ \rho_b $</tex-math></inline-formula> affects the output performance will be extended to when <italic>n-</italic>PERT-RJ solar cells are served as the bottom subcell in a four-terminal tandem configuration.

[1]  R. Kopecek,et al.  Investigation on Industrial Screen-Printed Aluminum Point Contact and Its Application in n-PERT Rear Junction Solar Cells , 2019, IEEE Journal of Photovoltaics.

[2]  V. Mihailetchi,et al.  693 mV VOC industrial screen-printed n-PERT rear junction solar cells with stable efficiency beyond 22% , 2019, 15th International Conference on Concentrator Photovoltaic Systems (CPV-15).

[3]  V. Mihailetchi,et al.  Industrial Screen-Printed n-PERT-RJ Solar Cells: Efficiencies Beyond 22% and Open-Circuit Voltages Approaching 700 mV , 2019, IEEE Journal of Photovoltaics.

[4]  Peter Chen,et al.  The utilization of IZO transparent conductive oxide for tandem and substrate type perovskite solar cells , 2018, Journal of Physics D: Applied Physics.

[5]  R. Kopecek,et al.  Towards 22% efficiency n-PERT rear junction solar cells with screen printed Al point back contact , 2018 .

[6]  Tomas Leijtens,et al.  Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors , 2018, Nature Energy.

[7]  M. Schubert,et al.  The concept of skins for silicon solar cell modeling , 2017 .

[8]  Mohammad Khaja Nazeeruddin,et al.  Facile fabrication method of small-sized crystal silicon solar cells for ubiquitous applications and tandem device with perovskite solar cells , 2017 .

[9]  Ingrid G. Romijn,et al.  Aspects of bifacial cell efficiency , 2017 .

[10]  A. Carr,et al.  Bifacial aspects of industrial n-Pasha solar cells , 2017 .

[11]  S. Mali,et al.  p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. , 2016, Nanoscale.

[12]  Christopher H. Hendon,et al.  Modular design of SPIRO-OMeTAD analogues as hole transport materials in solar cells. , 2015, Chemical communications.

[13]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[14]  C. Ballif,et al.  Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[15]  B. Lim,et al.  n-PERT Back Junction Solar Cells: an Option for the Next Industrial Technology Generation? , 2014 .

[16]  A. Cuevas,et al.  Misconceptions and Misnomers in Solar Cells , 2013, IEEE Journal of Photovoltaics.

[17]  S. Wenham,et al.  High efficiency n-silicon solar cells using rear junction structures , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[18]  A. Cuevas,et al.  Review of analytical models for the study of highly doped regions of silicon devices , 1989 .

[19]  R. J. Schwartz,et al.  The interdigitated back contact solar cell: A silicon solar cell for use in concentrated sunlight , 1977, IEEE Transactions on Electron Devices.

[20]  C. Ballif,et al.  Perovskite/Silicon Tandem Solar Cells: Marriage of Convenience or True Love Story? – An Overview , 2018 .

[21]  M. Hörteis,et al.  Towards industrial n-type PERT silicon solar cells: Rear passivation and metallization scheme , 2011 .