Approximate capacity of the Gaussian interference channel with noisy channel-output feedback

In this paper, an achievability region and a converse region for the two-user Gaussian interference channel with noisy channel-output feedback (G-IC-NOF) are presented. The achievability region is obtained using a random coding argument and three well-known techniques: rate splitting, superposition coding and backward decoding. The converse region is obtained using some of the existing perfect-output feedback outer-bounds as well as a set of new outer-bounds that are obtained by using genie-aided models of the original G-IC-NOF. Finally, it is shown that the achievability region and the converse region approximate the capacity region of the G-IC-NOF to within a constant gap in bits per channel use.

[1]  Syed A. Jafar,et al.  Interference Alignment: A New Look at Signal Dimensions in a Communication Network , 2011, Found. Trends Commun. Inf. Theory.

[2]  Aydano B. Carleial,et al.  A case where interference does not reduce capacity (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[3]  Hua Wang,et al.  Gaussian Interference Channel Capacity to Within One Bit , 2007, IEEE Transactions on Information Theory.

[4]  Igal Sason,et al.  On achievable rate regions for the Gaussian interference channel , 2004, IEEE Transactions on Information Theory.

[5]  Ashutosh Sabharwal,et al.  Capacity of All Nine Models of Channel Output Feedback for the Two-User Interference Channel , 2013, IEEE Transactions on Information Theory.

[6]  H. Vincent Poor,et al.  Approximate Capacity Region for the Symmetric Gaussian Interference Channel With Noisy Feedback , 2015, IEEE Transactions on Information Theory.

[7]  Daniela Tuninetti,et al.  Interference Channel With Generalized Feedback (a.k.a. With Source Cooperation): Part I: Achievable Region , 2010, IEEE Transactions on Information Theory.

[8]  Xiaodong Wang,et al.  On the Symmetric $K$ -User Interference Channels With Limited Feedback , 2016, IEEE Transactions on Information Theory.

[9]  G. Kramer,et al.  On Noisy Feedback for Interference Channels , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[10]  Jean-Marie Gorce,et al.  Noisy channel-output feedback capacity of the linear deterministic interference channel , 2015, 2015 IEEE Information Theory Workshop - Fall (ITW).

[11]  Claude E. Shannon,et al.  Two-way Communication Channels , 1961 .

[12]  Aydano B. Carleial,et al.  Interference channels , 1978, IEEE Trans. Inf. Theory.

[13]  Mehul Motani,et al.  On The Han–Kobayashi Region for theInterference Channel , 2008, IEEE Transactions on Information Theory.

[14]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[15]  Frans M. J. Willems,et al.  The discrete memoryless multiple-access channel with cribbing encoders , 1985, IEEE Trans. Inf. Theory.

[16]  Jean-Marie Gorce,et al.  When Does Output Feedback Enlarge the Capacity of the Interference Channel? , 2018, IEEE Transactions on Communications.

[17]  David Tse,et al.  Feedback Capacity of the Gaussian Interference Channel to Within 2 Bits , 2010, IEEE Transactions on Information Theory.

[18]  H. Vincent Poor,et al.  Symmetric decentralized interference channels with noisy feedback , 2014, 2014 IEEE International Symposium on Information Theory.

[19]  Anders Høst-Madsen,et al.  Capacity bounds for Cooperative diversity , 2006, IEEE Transactions on Information Theory.

[20]  Cyril Leung,et al.  An achievable rate region for the multiple-access channel with feedback , 1981, IEEE Trans. Inf. Theory.

[21]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[22]  Sennur Ulukus,et al.  Dependence Balance Based Outer Bounds for Gaussian Networks With Cooperation and Feedback , 2011, IEEE Transactions on Information Theory.

[23]  Daniela Tuninetti,et al.  An outer bound for the memoryless two-user interference channel with general cooperation , 2012, 2012 IEEE Information Theory Workshop.

[24]  Gerhard Kramer,et al.  Outer bounds on the capacity of Gaussian interference channels , 2004, IEEE Transactions on Information Theory.

[25]  Te Sun Han,et al.  A new achievable rate region for the interference channel , 1981, IEEE Trans. Inf. Theory.

[26]  Daniela Tuninetti,et al.  On InterFerence Channel with Generalized Feedback (IFC-GF) , 2007, 2007 IEEE International Symposium on Information Theory.

[27]  Ashutosh Sabharwal,et al.  On channel output feedback in deterministic interference channels , 2009, 2009 IEEE Information Theory Workshop.

[28]  David Tse,et al.  The two-user Gaussian interference channel: a deterministic view , 2008, Eur. Trans. Telecommun..

[29]  Zhu Han,et al.  Perfect Output Feedback in the Two-User Decentralized Interference Channel , 2013, IEEE Transactions on Information Theory.

[30]  H. Vincent Poor,et al.  The capacity region of the symmetric linear deterministic interference channel with partial feedback , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[31]  Amir Salman Avestimehr,et al.  Interference Channels With Rate-Limited Feedback , 2011, IEEE Transactions on Information Theory.

[32]  Suhas N. Diggavi,et al.  Gaussian Interference Channel With Intermittent Feedback , 2015, IEEE Transactions on Information Theory.

[33]  Daniela Tuninetti An outer bound region for Interference Channels with Generalized Feedback , 2010, 2010 Information Theory and Applications Workshop (ITA).

[34]  Gerhard Kramer,et al.  Feedback strategies for white Gaussian interference networks , 2002, IEEE Trans. Inf. Theory.

[35]  H. Vincent Poor,et al.  Nash region of the linear deterministic interference channel with noisy output feedback , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[36]  Andries P. Hekstra,et al.  Dependence balance bounds for single-output two-way channels , 1989, IEEE Trans. Inf. Theory.