The deep structure of continents

The Lehmann discontinuity at 220-km depth is an important global feature which occurs under both oceans and continents. It is a barrier to penetration by young lithosphere and marks the base of seismicity in regions of continent-continent collision. The strong lateral variation in upper mantle velocities occurs mainly above this depth. Continental roots extend no deeper than about 150–200 km. The basalteclogite transformation and eclogite-harzburgite separation may be responsible for the geometry of intermediate depth earthquakes. Oceanic and continental geotherms converge above about 200 km and become less steep than the melting gradient at greater depth. This implies a low viscosity channel near 250 km. This would give a decoupling zone of maximum shear beneath continental shields. The Lehmann discontinuity may be the interface between two distinct geochemical reservoirs. The velocity jump, and the inferred density jump, at 220 km are consistent with an increase in garnet content. The mantle may be garnet lherzolite above and eclogite immediately below the Lehmann discontinuity. The transition region may be mainly eclogite and be the source region for oceanic tholeiites.

[1]  J. Brune,et al.  Seismic waves and earth structure in the Canadian shield , 1963 .

[2]  Lateral heterogeneity of the upper mantle determined from the travel times of multiple ScS , 1975 .

[3]  Donald V. Helmberger,et al.  Upper mantle structure of the western United States , 1971 .

[4]  S. Solomon,et al.  Shear wave travel time residuals from oceanic earthquakes and the evolution of oceanic lithosphere , 1977 .

[5]  M. Ewing,et al.  Study of shear-velocity distribution in the upper mantle by mantle Rayleigh waves , 1960 .

[6]  R. Adams Reflections from discontinuities beneath antarctica , 1971, Bulletin of the Seismological Society of America.

[7]  Don L. Anderson,et al.  Recent evidence concerning the structure and composition of the Earth's mantle , 1965 .

[8]  I. Lehmann S and the Structure of the Upper Mantle , 1961 .

[9]  Don L. Anderson,et al.  Chemical inhomogeneity of the mantle , 1968 .

[10]  S. Solomon Geophysical constraints on radial and lateral temperature variations in the upper mantle , 1976 .

[11]  Mineo Kumazawa,et al.  Elastic moduli, pressure derivatives, and temperature derivatives of single‐crystal olivine and single‐crystal forsterite , 1969 .

[12]  B. Gutenberg Low-velocity layers in the Earth's mantle , 1954 .

[13]  F. Nabarro Steady-state diffusional creep , 1967 .

[14]  D. L. Anderson,et al.  Shear Velocities and Elastic Parameters of the Mantle , 1969 .

[15]  D. L. Anderson,et al.  A study of lateral inhomogeneities in the upper mantle by multiple Scs travel‐time residuals , 1975 .

[16]  A. Dziewoński Upper mantle models from ‘pure‐path’ dispersion data , 1971 .

[17]  Don L. Anderson,et al.  Composition of the Mantle and Core , 1977 .

[18]  Don L. Anderson,et al.  The effect of attenuation on gross earth models , 1977 .

[19]  M. Wortel,et al.  Lithospheric aging, instability and subduction , 1976 .

[20]  J. Whitcomb Part I. A study of the velocity structure of the earth by the use of core phases. Part II. The 1971 San Fernando earthquake series focal mechanisms and tectonics , 1973 .

[21]  D. L. Anderson,et al.  Universal dispersion tables: II. Variational parameters for amplitudes, phase velocity and group velocity for first four Love modes for an oceanic and a continental earth model , 1968 .

[22]  Thomas H. Jordan,et al.  Composition and development of the continental tectosphere , 1978, Nature.

[23]  G. MacDonald The Deep Structure of Continents. , 1963, Science.

[24]  C. Goetze The mechanisms of creep in olivine , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[25]  M. Niazi Use of source arrays in studies of regional structure , 1969 .

[26]  E. S. Husebye,et al.  Lithosphere thickness beneath the baltic shield , 1979 .

[27]  A. L. Hales,et al.  The travel times of S and SKS , 1970 .

[28]  E. Okal Observed very long period Rayleigh-wave phase velocities across the Canadian shield , 1978 .

[29]  M. Cara Lateral variations of S velocity in the upper mantle from higher Rayleigh modes , 1979 .

[30]  T. Jordan The continental tectosphere , 1975 .

[31]  J. Marsh,et al.  On global gravity anomalies and two-scale mantle convection , 1976 .

[32]  L. Knopoff,et al.  Structure of the crust and upper mantle in the ALPS from the phase velocity of Rayleigh waves , 1966 .

[33]  T. Jordan,et al.  Crustal and upper mantle structure from Sp phases , 1975 .

[34]  F. R. Boyd,et al.  A pyroxene geotherm , 1973 .

[35]  E. Okal The effect of intrinsic oceanic upper-mantle heterogeneity on regionalization of long-period Rayleigh-wave phase velocities , 1977 .

[36]  D. Helmberger,et al.  Upper mantle shear structure , 1974 .

[37]  L. Knopoff,et al.  Shear wave anisotropy in the upper mantle of the Pacific Basin , 1976 .

[38]  S. Akimoto,et al.  Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12Mg3Al2Si3O12 and Fe4Si4O12Fe3Al2Si3O12 at high pressures and temperatures , 1977 .

[39]  K. Lambeck Lateral density anomalies in the upper mantle , 1976 .

[40]  D. L. Anderson Latest Information from Seismic Observations , 1967 .

[41]  M. Ashby,et al.  Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[42]  F. R. Boyd,et al.  Densities of fertile and sterile garnet peridotites , 1976 .

[43]  Don L. Anderson,et al.  Phase Changes in the Upper Mantle , 1967, Science.

[44]  H. Kanamori Velocity and Q of mantle waves , 1970 .

[45]  T. Jordan,et al.  Earth structure from free oscillations and travel times: Geophys , 1974 .

[46]  D. L. Anderson,et al.  Reflection of P′P′ seismic waves from discontinuities in the mantle , 1970 .

[47]  I. Lehmann Velocities of longitudinal waves in the upper part of the earth's mantle , 1959 .

[48]  T. Jordan The Deep Structure of the Continents , 1979 .

[49]  D. Anderson,et al.  Seismic velocity, attenuation and rheology of the upper mantle , 1980 .

[50]  D. L. Anderson A Seismic Equation of State , 1967 .

[51]  A. J. Wickens Variations in Lithospheric Thickness in Canada , 1971 .

[52]  G. Schubert,et al.  Mantle circulation with partial shallow return flow: Effects on stresses in oceanic plates and topography of the sea floor , 1978 .

[53]  R. Massé Shear velocity distribution beneath the Canadian Shield , 1973 .

[54]  P. Molnar,et al.  Distribution of stresses in the descending lithosphere from a global survey of focal‐mechanism solutions of mantle earthquakes , 1971 .

[55]  B. Kennett,et al.  A comparison of the upper-mantle structure beneath Eurasia and the North Atlantic and Arctic Oceans , 1978 .

[56]  D. Murcray,et al.  Statistical‐band‐model analysis and integrated intensity for the 10.8µm band of CF2Cl2 , 1976 .