Tides, sea-level rise and tidal power extraction on the European shelf

An established numerical tidal model has been used to investigate the impact of various sea-level rise (SLR) scenarios, as well as SLR in combination with large-scale tidal power plants on European shelf tidal dynamics. Even moderate and realistic levels of future SLR are shown to have significant impacts on the tidal dynamics of the area. These changes are further enhanced when SLR and tidal power plants are considered in combination, resulting in changes to tidal amplitudes, currents and associated tidal dissipation and bed shear stresses. Sea-level rise is the dominant influence on any far-field impacts, whereas tidal power plants are shown to have the prevailing influence over any changes close to the point of energy extraction. The spatial extent of the impacts of energy extraction is shown to be affected by the sea level when more than one tidal power plant in the Irish Sea was considered. Different ways to implement SLR in the model are also discussed and shown to be of great significance for the response of the tides.

[1]  C. Garrett,et al.  Tidal current energy assessment for Johnstone Strait, Vancouver Island , 2007 .

[2]  Anthony W. Purcell,et al.  Tidal evolution of the northwest European shelf seas from the Last Glacial Maximum to the present , 2006 .

[3]  R. Vennell Tuning tidal turbines in-concert to maximise farm efficiency , 2011, Journal of Fluid Mechanics.

[4]  K. Thompson,et al.  Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model , 2011 .

[5]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[6]  S. Rahmstorf,et al.  Global sea level linked to global temperature , 2009, Proceedings of the National Academy of Sciences.

[7]  Chris W. Hughes,et al.  Identifying the causes of sea-level change , 2009 .

[8]  Ole Baltazar Andersen,et al.  Shallow water tides in the northwest European shelf region from TOPEX/POSEIDON altimetry , 1999 .

[9]  W. Peltier,et al.  Megatides in the Arctic Ocean under glacial conditions , 2008 .

[10]  Kimio Hanawa,et al.  Observations: Oceanic Climate Change and Sea Level , 2007 .

[11]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[12]  J. Molen The influence of tides, wind and waves on the net sand transport in the North Sea , 2002 .

[13]  Gary D. Egbert,et al.  Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum , 2004 .

[14]  Malte Müller,et al.  The effect of ocean tides on a climate model simulation , 2010 .

[15]  R. Gehrels Sea‐level changes since the Last Glacial Maximum: an appraisal of the IPCC Fourth Assessment Report , 2010 .

[16]  A. M. Davies,et al.  Modelling tidally induced sediment-transport paths over the northwest European shelf: the influence of sea-level reduction , 2004 .

[17]  P Ekins,et al.  Evidence to Treasury Select Committee ‘Inquiry into Climate change and the Stern review: the implications for HM Treasury policy on tax and the environment’ , 2007 .

[18]  A. Soroush,et al.  Statistical study of no-erosion filter (NEF) test results , 2009 .

[19]  P. Roos,et al.  Influence of topography on tide propagation and amplification in semi-enclosed basins , 2011 .

[20]  S. Neill,et al.  The impact of tidal stream turbines on large-scale sediment dynamics , 2009 .

[21]  N. White,et al.  A 20th century acceleration in global sea‐level rise , 2006 .

[22]  R. Pingree,et al.  Sand transport paths around the British Isles resulting from M 2 and M 4 tidal interactions , 1979 .

[23]  Griffiths,et al.  Modeling of Polar Ocean Tides at the Last Glacial Maximum: Amplification, Sensitivity, and Climatological Implications , 2009 .

[24]  R. Falconer,et al.  Impact of different tidal renewable energy projects on the hydrodynamic processes in the Severn Estuary, UK , 2010 .

[25]  R. Pingree,et al.  Tidal Friction and the Diurnal Tides on the North-West European Shelf , 1982, Journal of the Marine Biological Association of the United Kingdom.

[26]  J. Wolf,et al.  Environmental impacts of tidal power schemes , 2009 .

[27]  D. Prandle Design of tidal barrage power schemes , 2009 .

[28]  Terry Hedges,et al.  Tidal energy potential in UK waters , 2009 .

[29]  A. Speranza,et al.  Co-oscillating tides in long, narrow bays; the Taylor problem revisited , 1971 .

[30]  G. Bigg,et al.  Tidal mixing and the Meridional Overturning Circulation from the Last Glacial Maximum , 2009 .

[31]  Christopher C. Pain,et al.  Modelling tidal current‐induced bed shear stress and palaeocirculation in an epicontinental seaway: the Bohemian Cretaceous Basin, Central Europe , 2010 .

[32]  J. Hunter,et al.  Estimating sea-level extremes under conditions of uncertain sea-level rise , 2010 .

[33]  S. Neill,et al.  Changes in wave climate over the northwest European shelf seas during the last 12,000 years , 2009 .

[34]  K. Horsburgh,et al.  The impact of future sea-level rise on the European Shelf tides , 2012 .

[35]  W. T. Pfeffer,et al.  Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise , 2008, Science.

[36]  Gary D. Egbert,et al.  Estimates of M2 Tidal Energy Dissipation from TOPEX/Poseidon Altimeter Data , 2001 .

[37]  G. Taylor Tidal Oscillations in Gulfs and Rectangular Basins , 1922 .

[38]  G. Milne,et al.  Late Holocene sea-level changes and isostatic crustal movements in Atlantic Canada , 2004 .

[39]  D. Pugh Tides, Surges and Mean Sea-Level , 1987 .

[40]  L. Miller,et al.  Mass and volume contributions to twentieth-century global sea level rise , 2004, Nature.

[41]  Gareth Harrison,et al.  Life cycle assessment of the Seagen marine current turbine , 2008 .

[42]  Anny Cazenave,et al.  Present-day sea-level change: A review , 2006 .

[43]  J. Scourse,et al.  Impact of sea‐level rise over the last deglacial transition on the strength of the continental shelf CO2 pump , 2008 .

[44]  C. Garrett,et al.  A coupled oscillator model of shelf and ocean tides , 2010 .

[45]  J. Green Ocean tides and resonance , 2010 .

[46]  A. Wheeler,et al.  Post-glacial sediment dynamics in the Irish Sea and sediment wave morphology: data-model comparisons. , 2009 .