The behavior of the generated quantum correlations in two-SC-qubit system strongly coupled with a SC cavity in the presence of local noise

An analytical solution of the master equation that describes two charge superconducting qubits interacts with a single microwave cavity field mode within dispersive approximation and dissipation region of the qubit damping. Quantum correlations of a general two-qubit state (non-X-state) are studied by using three different quantum correlation quantifiers: measurement-induced non-locality, geometric quantum discord and logarithmic negativity. It is shown that the quantum correlations are sensitive to the choice of the parameters of the qubit dissipation rate, coherent state intensity and the initial qubit distribution angle. The generated oscillatory behavior of quantum correlations is different and more prominent as the noise rate decreases at the considered period of time.

[1]  Liu Ye,et al.  Purifying two-qubit entanglement in nonidentical decoherence by employing weak measurements , 2015, Quantum Inf. Process..

[2]  Ye Liu,et al.  Dynamics of entanglement under decoherence in noninertial frames , 2014 .

[3]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[4]  Hybridized solid-state qubit in the charge-flux regime , 2004, cond-mat/0409010.

[5]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[6]  F. Nori,et al.  Measuring the quality factor of a microwave cavity using superconducting qubit devices , 2005, quant-ph/0506016.

[7]  H. A. Hessian,et al.  A proposal for the realization of universal quantum gates via superconducting qubits inside a cavity , 2013 .

[8]  Heng Fan,et al.  Correlations in the Grover search , 2009, 0904.2703.

[9]  Jin-Long Wei,et al.  Dynamical behavior of quantum correlations between two qubits coupled to an external environment , 2016, Quantum Inf. Process..

[10]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[11]  G. Compagno,et al.  DYNAMICS AND EXTRACTION OF QUANTUM DISCORD IN A MULTIPARTITE OPEN SYSTEM , 2011, 1106.4496.

[12]  F. R. Ong,et al.  Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence , 2014, 1407.1346.

[13]  Raoul Dillenschneider,et al.  Quantum discord and quantum phase transition in spin chains , 2008, 0809.1723.

[14]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[15]  A.-S. F. Obada,et al.  Efficient protocol of $$N$$N-bit discrete quantum Fourier transform via transmon qubits coupled to a resonator , 2014, Quantum Inf. Process..

[16]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[17]  A. Joshi,et al.  Bipartite non-local correlations in a double-quantum-dot excitonic system , 2014 .

[18]  William K. Wootters,et al.  Erratum: Remote State Preparation [Phys. Rev. Lett. 87, 077902 (2001)] , 2002 .

[19]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[20]  H. A. Hessian,et al.  Entanglement sudden death of a SC-qubit strongly coupled with a quantized mode of a lossy cavity , 2011 .

[21]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[22]  Chang-shui Yu,et al.  Uncertainty-induced quantum nonlocality , 2013, 1312.0080.

[23]  C. Xie,et al.  Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. , 2002, Physical review letters.

[24]  Dong Wang,et al.  Comparative explorations of the revival and robustness for quantum dynamics under decoherence channels , 2016, Quantum Inf. Process..

[25]  S. Lloyd,et al.  Quantum Coherent Tunable Coupling of Superconducting Qubits , 2007, Science.

[26]  A.-B. A. Mohamed,et al.  Pairwise quantum correlations of a three-qubit XY chain with phase decoherence , 2013, Quantum Inf. Process..

[27]  Franco Nori,et al.  Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits , 2003, cond-mat/0306363.

[28]  Gregg Jaeger,et al.  Finite-Time Destruction of Entanglement and Non-Locality by Environmental Influences , 2009, 0903.0009.

[29]  M. S. Sarandy Classical correlation and quantum discord in critical systems , 2009, 0905.1347.

[30]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[31]  Liu Ye,et al.  Multipartite concurrence for $$X$$X states under decoherence , 2013, Quantum Inf. Process..

[32]  Shuangshuang Fu,et al.  Measurement-induced nonlocality. , 2011, Physical review letters.

[33]  Yuriy Makhlin,et al.  Josephson-junction qubits with controlled couplings , 1999, Nature.

[34]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[35]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[36]  Zehua Tian,et al.  Measurement-induced-nonlocality via the Unruh effect , 2013, 1301.5981.

[37]  A. Mohamed,et al.  Quantum correlations of two non-interacting ion's internal electronic states with intrinsic decoherence , 2013 .

[38]  H. Eleuch,et al.  Generation and robustness of bipartite non-classical correlations in two nonlinear microcavities coupled by an optical fiber , 2018 .

[39]  Z. Ficek,et al.  Delayed sudden birth of entanglement , 2008, 0802.4287.

[40]  L. Masanes All bipartite entangled states are useful for information processing. , 2005, Physical review letters.

[41]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[42]  S. Luo Using measurement-induced disturbance to characterize correlations as classical or quantum , 2008 .

[43]  Dong Wang,et al.  Enhancing quantum correlation in open-system dynamics by reliable quantum operations , 2015, Quantum Inf. Process..

[44]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.