Super-resolution mbPAINT for optical localization of single-stranded DNA.

We demonstrate the application of superlocalization microscopy to identify sequence-specific portions of single-stranded DNA (ssDNA) with sequence resolution of 50 nucleotides, corresponding to a spatial resolution of 30 nm. Super-resolution imaging was achieved using a variation of a single-molecule localization method, termed as "motion blur" point accumulation for imaging in nanoscale topography (mbPAINT). The target ssDNA molecules were immobilized on the substrate. Short, dye-labeled, and complementary ssDNA molecules stochastically bound to the target ssDNA, with repeated binding events allowing super-resolution. Sequence specificity was demonstrated via the use of a control, noncomplementary probe. The results support the possibility of employing relatively inexpensive short ssDNAs to identify gene sequence specificity with improved resolution in comparison to the existing methods.

[1]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[2]  Christy F Landes,et al.  Dynamics of an anti-VEGF DNA aptamer: a single-molecule study. , 2008, Biochemical and biophysical research communications.

[3]  Juan J de Pablo,et al.  A single-molecule barcoding system using nanoslits for DNA analysis , 2007, Proceedings of the National Academy of Sciences.

[4]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[5]  Mike Heilemann,et al.  Live-cell super-resolution imaging with trimethoprim conjugates , 2010, Nature Methods.

[6]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[7]  N. Thompson,et al.  Total internal reflection fluorescence. , 1984, Annual review of biophysics and bioengineering.

[8]  O. White,et al.  Whole-genome shotgun optical mapping of Deinococcus radiodurans. , 1999, Science.

[9]  Michael A Thompson,et al.  Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP , 2008, Nature Methods.

[10]  Dylan T Burnette,et al.  Bayesian localisation microscopy reveals nanoscale podosome dynamics , 2011, Nature Methods.

[11]  E. M. Peterson,et al.  Quantitative detection of single molecules in fluorescence microscopy images. , 2010, Analytical chemistry.

[12]  C. Ravarani,et al.  Super-resolution imaging of DNA labelled with intercalating dyes. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  S. Hell,et al.  Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit , 1995 .

[14]  F. Simmel,et al.  Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. , 2010, Nano letters.

[15]  S. Diez,et al.  TIRF microscopy evanescent field calibration using tilted fluorescent microtubules , 2009, Journal of microscopy.

[16]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[17]  Cremer,et al.  High‐precision distance measurements and volume‐conserving segmentation of objects near and below the resolution limit in three‐dimensional confocal fluorescence microscopy , 1998 .

[18]  Robert Walder,et al.  Super-resolution surface mapping using the trajectories of molecular probes. , 2011, Nature communications.

[19]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Veerkamp,et al.  Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. , 2000, Biomaterials.

[21]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[22]  M. Heilemann,et al.  Live-cell super-resolution imaging with synthetic fluorophores. , 2012, Annual review of physical chemistry.

[23]  P. Carroad,et al.  Estimation of diffusion coefficients of proteins , 1980 .

[24]  M. Burns,et al.  Super-resolution imaging of PDMS nanochannels by single-molecule micelle-assisted blink microscopy. , 2013, The journal of physical chemistry. B.

[25]  S. Weiss,et al.  Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) , 2009, Proceedings of the National Academy of Sciences.

[26]  D. Baddeley,et al.  Using conventional fluorescent markers for far‐field fluorescence localization nanoscopy allows resolution in the 10‐nm range , 2009, Journal of microscopy.

[27]  Robert J. Gorelick,et al.  Human T-Cell Lymphotropic Virus Type 1 Nucleocapsid Protein-Induced Structural Changes in Transactivation Response DNA Hairpin Measured by Single-Molecule Fluorescence Resonance Energy Transfer , 2008, Journal of Virology.

[28]  Z. Ou-Yang,et al.  Stretching single-stranded DNA: interplay of electrostatic, base-pairing, and base-pair stacking interactions. , 2001, Biophysical journal.

[29]  L. Tauzin,et al.  Photobleaching Lifetimes of Cyanine Fluorophores Used for Single‐Molecule Förster Resonance Energy Transfer in the Presence of Various Photoprotection Systems , 2013, Chembiochem : a European journal of chemical biology.

[30]  X. Zhuang,et al.  Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells , 2010, Cell.

[31]  Christian Eggeling,et al.  Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Robert Walder,et al.  Identifying mechanisms of interfacial dynamics using single-molecule tracking. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[33]  S. Kowalczykowski,et al.  Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA , 2012, Nature.

[34]  A. Ting,et al.  Fluorescent probes for super-resolution imaging in living cells , 2008, Nature Reviews Molecular Cell Biology.

[35]  R. Heintzmann,et al.  Saturated patterned excitation microscopy--a concept for optical resolution improvement. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  Hao Shen,et al.  Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. , 2012, Nature nanotechnology.

[37]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[38]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[39]  Deacon J. Sweeney,et al.  Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus) , 2012, Nature Biotechnology.

[40]  D. Lamb,et al.  Quantitative Live-Cell Imaging of Human Immunodeficiency Virus (HIV-1) Assembly , 2012, Viruses.

[41]  Viola Vogel,et al.  Binding-activated localization microscopy of DNA structures. , 2011, Nano letters.

[42]  Paul R Selvin,et al.  Single-molecule-based super-resolution images in the presence of multiple fluorophores. , 2011, Nano letters.

[43]  Alex Hastie,et al.  Multicolor super-resolution DNA imaging for genetic analysis. , 2012, Nano letters.

[44]  P. Kwok,et al.  Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly , 2012, Nature Biotechnology.

[45]  M. Roeffaers,et al.  Super-resolution reactivity mapping of nanostructured catalyst particles. , 2009, Angewandte Chemie.

[46]  Paul R. Selvin,et al.  Kinesin and Dynein Move a Peroxisome in Vivo: A Tug-of-War or Coordinated Movement? , 2005, Science.

[47]  P. Dedecker,et al.  DNA fluorocode: A single molecule, optical map of DNA with nanometre resolution , 2010 .

[48]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.