A DECISION PROCEDURE FOR PROBABILITY CALCULUS WITH APPLICATIONS

A decision procedure (PrSAT) for classical (Kolmogorov) probability calcu- lus is presented. This decision procedure is based on an existing decision procedure for the theory of real closed fields, which has recently been implemented in Mathe- matica. A Mathematica implementation of PrSAT is also described, along with several applications to various non-trivial problems in the probability calculus.

[1]  Branden Fitelson,et al.  A Bayesian Account of Independent Evidence with Applications , 2001, Philosophy of Science.

[2]  Ernest W. Adams,et al.  A primer of probability logic , 1996 .

[3]  Hoon Hong,et al.  Simple solution formula construction in cylindrical algebraic decomposition based quantifier elimination , 1992, ISSAC '92.

[4]  Adam W. Strzebonski,et al.  Solving Systems of Strict Polynomial Inequalities , 2000, J. Symb. Comput..

[5]  Scott McCallum,et al.  An Improved Projection Operation for Cylindrical Algebraic Decomposition , 1985, European Conference on Computer Algebra.

[6]  Donald Gillies,et al.  In Defense of the Popper-Miller Argument , 1986, Philosophy of Science.

[7]  I. J. GOOD The impossibility of inductive probability , 1984, Nature.

[8]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[9]  Ellery Eells Rational Decision and Causality , 1982 .

[10]  Branden Fitelson The Plurality of Bayesian Measures of Confirmation and the Problem of Measure Sensitivity , 1999, Philosophy of Science.

[11]  Trenchard More On the Construction of Venn Diagrams , 1959, J. Symb. Log..

[12]  R. Swinburne Bayes's theorem , 2005 .

[13]  Christopher W. Brown Simple CAD Construction and its Applications , 2001, J. Symb. Comput..

[14]  R. Jeffrey Probability and the Art of Judgment , 1992 .

[15]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[16]  I.,et al.  Weight of Evidence : A Brief Survey , 2006 .

[17]  D. Schum The Evidential Foundations of Probabilistic Reasoning , 1994 .

[18]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[19]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[20]  H. Hong An improvement of the projection operator in cylindrical algebraic decomposition , 1990, ISSAC '90.

[21]  Peter Urbach,et al.  Scientific Reasoning: The Bayesian Approach , 1989 .

[22]  C. Teuscher,et al.  Alan Turing: Life and Legacy of a Great Thinker , 2004, Springer Berlin Heidelberg.

[23]  Solomon Feferman,et al.  Alfred Tarski: Life and Logic , 2004 .

[24]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[25]  Branden Fitelson,et al.  How Bayesian Confirmation Theory Handles the Paradox of the Ravens , 2010 .

[26]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[27]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[28]  A. Strzebonski Solving Algebraic Inequalities , 2000 .

[29]  D. Stalker,et al.  Grue the New Riddle of Induction , 1994 .

[30]  Christopher W. Brown Improved Projection for Cylindrical Algebraic Decomposition , 2001, J. Symb. Comput..

[31]  J. Paris The Uncertain Reasoner's Companion: A Mathematical Perspective , 1994 .

[32]  Brian Skyrms,et al.  Bayes or Bust , 2000 .

[33]  B. L. O C K I N G C O N T R A P O S A B I L I Bayesian Confirmation : Paradise Regained , 2022 .

[34]  Hoon Pyo Hong Comparison of Several Decision Algorithms for the Existential Theory of the Reals , 1991 .

[35]  James M. Joyce The Foundations of Causal Decision Theory , 1999 .

[36]  Branden Fitelson,et al.  STUDIES IN BAYESIAN CONFIRMATION THEORY , 2001 .

[37]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[38]  Alfréd Rényi,et al.  Foundations of Probability , 1971 .

[39]  Dale Schuurmans,et al.  Local search characteristics of incomplete SAT procedures , 2000, Artif. Intell..

[40]  W. G. Bickley Mechanization of Mathematics , 1950, Nature.

[41]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..