Resolvent operators for integral equations in a Banach space

Conditions are given which ensure the existence of a resolvent operator for an integrodifferential equation in a Banach space. The resolvent operator is similar to an evolution operator for nonautonomous differential equations in a Banach space. As in the finite dimensional case, this operator is used to obtain a variation of parameters formula which can be used to obtain results concerning the asymptotic behaviour of solutions and weak solutions.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Avner Friedman,et al.  Volterra integral equations in Banach space , 1967 .

[3]  M. Gurtin,et al.  A general theory of heat conduction with finite wave speeds , 1968 .

[4]  Richard K Miller,et al.  Nonlinear Volterra Integral Equations , 1970 .

[5]  R. K. Miller,et al.  Perturbation theory for Volterra integrodifferential systems , 1970 .

[6]  Tosio Kato,et al.  Linear evolution equations of ``hyperbolic'' type, II , 1973 .

[7]  R. Grimmer,et al.  Stability properties of Volterra integrodifferential equations , 1975 .

[8]  The Resolvent Kernel of an Integrodifferential Equation in Hilbert Space , 1976 .

[9]  Uniform $L^1 $ Behavior for an Integrodifferential Equation with Parameter , 1977 .

[10]  R. L. Wheeler,et al.  Asymptotic behavior for a linear Volterra integral equation in Hilbert space , 1977 .

[11]  R. K. Miller,et al.  Existence, uniqueness, and continuity for integral equations in a Banach space☆ , 1977 .

[12]  R. K. Miller,et al.  An integrodifferential equation for rigid heat conductors with memory , 1978 .

[13]  Z. B. Tsalyuk Volterra integral equations , 1979 .

[14]  Hiroki Tanabe,et al.  Equations of evolution , 1979 .

[15]  Goong Chen,et al.  Control and Stabilization for the Wave Equation in a Bounded Domain, Part II , 1979 .

[16]  A. J. Pritchard,et al.  Stability and Stabilizability of Infinite-Dimensional Systems , 1981 .

[17]  Goong Chen,et al.  Integral equations as evolution equations , 1982 .

[18]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.