The asymmetric travelling salesman problem and a reformulation of the Miller-Tucker-Zemlin constraints
暂无分享,去创建一个
[1] Luís Gouveia,et al. Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning tree problem with hop constraints , 1995, Comput. Oper. Res..
[2] Gilbert Laporte,et al. Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints , 1991, Oper. Res. Lett..
[3] Gilbert Laporte,et al. Efficient heuristics for the design of ring networks , 1995, Telecommun. Syst..
[4] L. Gouveia. A result on projection for the vehicle routing ptoblem , 1995 .
[5] André Langevin,et al. CLASSIFICATION OF TRAVELING SALESMAN PROBLEM FORMULATIONS , 1988 .
[6] W. R. Pulleyblank,et al. Polyhedral Combinatorics , 1989, ISMP.
[7] Matteo Fischetti,et al. Facets of the Asymmetric Traveling Salesman Polytope , 1991, Math. Oper. Res..
[8] Ting-Yi Sung,et al. An analytical comparison of different formulations of the travelling salesman problem , 1991, Math. Program..
[9] Matteo Fischetti,et al. A Polyhedral Approach to the Asymmetric Traveling Salesman Problem , 1997 .
[10] Ravindra K. Ahuja,et al. Network Flows: Theory, Algorithms, and Applications , 1993 .
[11] R. A. Zemlin,et al. Integer Programming Formulation of Traveling Salesman Problems , 1960, JACM.
[12] Stephen C. Graves,et al. The Travelling Salesman Problem and Related Problems , 1978 .