Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop

[1]  Sibo Zhu,et al.  Relating the transcriptome and microbiome by paired terminal ileal Crohn disease , 2021, iScience.

[2]  S. Kugathasan,et al.  African Ancestry Proportion Influences Ileal Gene Expression in Inflammatory Bowel Disease , 2020, Cellular and molecular gastroenterology and hepatology.

[3]  A. van Oudenaarden,et al.  Enteroendocrine and tuft cells support Lgr5 stem cells on Paneth cell depletion , 2019, Proceedings of the National Academy of Sciences.

[4]  Y. Mély,et al.  Exploring protein–protein interactions with large differences in protein expression levels using FLIM-FRET , 2019, Methods and applications in fluorescence.

[5]  H. Schneckenburger Förster resonance energy transfer–what can we learn and how can we use it? , 2019, Methods and applications in fluorescence.

[6]  M. Maurice,et al.  Wnt Signaling in 3D: Recent Advances in the Applications of Intestinal Organoids. , 2019, Trends in cell biology.

[7]  Zemin Zhang,et al.  GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis , 2019, Nucleic Acids Res..

[8]  O. Sansom,et al.  RAL GTPases Drive Intestinal Stem Cell Function and Regeneration through Internalization of WNT Signalosomes , 2019, Cell stem cell.

[9]  F. Sauvage,et al.  Cellular Plasticity in Intestinal Homeostasis and Disease , 2019 .

[10]  Hans Clevers,et al.  Tales from the crypt: new insights into intestinal stem cells , 2018, Nature Reviews Gastroenterology & Hepatology.

[11]  U. Rothbauer,et al.  Chromobodies to Quantify Changes of Endogenous Protein Concentration in Living Cells* , 2018, Molecular & Cellular Proteomics.

[12]  H. Clevers,et al.  Paneth Cells Respond to Inflammation and Contribute to Tissue Regeneration by Acquiring Stem-like Features through SCF/c-Kit Signaling. , 2018, Cell reports.

[13]  C. Counter,et al.  Wnt signaling suppresses MAPK-driven proliferation of intestinal stem cells , 2018, The Journal of clinical investigation.

[14]  K. Sigmundsson,et al.  PDGFRα+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo , 2018, Proceedings of the National Academy of Sciences.

[15]  H. Clevers,et al.  MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms. , 2017, Gastroenterology.

[16]  P. Sansonetti,et al.  CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury , 2017, Proceedings of the National Academy of Sciences.

[17]  E. Wagner,et al.  Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress , 2016, Cell Death & Disease.

[18]  Jinghang Zhang,et al.  Edinburgh Research Explorer Macrophage-derived Extracellular Vesicle packaged WNTs rescue intestinal stem cells 2 and enhance survival after radiation injury , 2016 .

[19]  J. Osborne,et al.  Paneth Cell-Rich Regions Separated by a Cluster of Lgr5+ Cells Initiate Crypt Fission in the Intestinal Stem Cell Niche , 2016, PLoS biology.

[20]  H. Clevers,et al.  Reparative inflammation takes charge of tissue regeneration , 2016, Nature.

[21]  K. Kaestner,et al.  Foxl1-Expressing Mesenchymal Cells Constitute the Intestinal Stem Cell Niche , 2015, Cellular and molecular gastroenterology and hepatology.

[22]  S. Calatayud,et al.  The activation of Wnt signaling by a STAT6-dependent macrophage phenotype promotes mucosal repair in murine IBD , 2015, Mucosal Immunology.

[23]  Antje Sommer,et al.  Principles Of Fluorescence Spectroscopy , 2016 .

[24]  U. Rothbauer,et al.  Monitoring Interactions and Dynamics of Endogenous Beta-catenin With Intracellular Nanobodies in Living Cells* , 2015, Molecular & Cellular Proteomics.

[25]  G. Davidson,et al.  CD44 functions in Wnt signaling by regulating LRP6 localization and activation , 2014, Cell Death and Differentiation.

[26]  T. Kirchhausen,et al.  In vivo analysis of formation and endocytosis of the Wnt/&bgr;-Catenin signaling complex in zebrafish embryos , 2014, Journal of Cell Science.

[27]  C. Loddenkemper,et al.  A guide to histomorphological evaluation of intestinal inflammation in mouse models. , 2014, International journal of clinical and experimental pathology.

[28]  Hans Clevers,et al.  Robust Cre-Mediated Recombination in Small Intestinal Stem Cells Utilizing the Olfm4 Locus , 2014, Stem cell reports.

[29]  F. D. de Sauvage,et al.  Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. , 2014, Cell stem cell.

[30]  B. Chassaing,et al.  Dextran Sulfate Sodium (DSS)‐Induced Colitis in Mice , 2014, Current protocols in immunology.

[31]  H. Clevers,et al.  Stem cell CD44v isoforms promote intestinal cancer formation in Apc(min) mice downstream of Wnt signaling , 2014, Oncogene.

[32]  J. Esplugues,et al.  M2 Macrophages Activate WNT Signaling Pathway in Epithelial Cells: Relevance in Ulcerative Colitis , 2013, PloS one.

[33]  Mingyao Liu,et al.  Lgr4 Gene Deficiency Increases Susceptibility and Severity of Dextran Sodium Sulfate-induced Inflammatory Bowel Disease in Mice*♦ , 2013, The Journal of Biological Chemistry.

[34]  M. Plateroti,et al.  Defining Suitable Reference Genes for RT-qPCR Analysis on Intestinal Epithelial Cells , 2013, Molecular Biotechnology.

[35]  H. Clevers,et al.  Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. , 2012, Gastroenterology.

[36]  S. Itzkovitz,et al.  A Critical Role for the Wnt Effector Tcf4 in Adult Intestinal Homeostatic Self-Renewal , 2012, Molecular and Cellular Biology.

[37]  W. Khan,et al.  Investigating intestinal inflammation in DSS-induced model of IBD. , 2012, Journal of visualized experiments : JoVE.

[38]  Julia B. Cordero,et al.  Wnt signalling and its role in stem cell‐driven intestinal regeneration and hyperplasia , 2012, Acta physiologica.

[39]  Hans Clevers,et al.  Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling , 2011, Nature.

[40]  Hans Clevers,et al.  Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts , 2011, Nature.

[41]  Hans Clevers,et al.  Coexistence of Quiescent and Active Adult Stem Cells in Mammals , 2010, Science.

[42]  Calvin J Kuo,et al.  Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche , 2009, Nature Medicine.

[43]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[44]  V. Orian-Rousseau,et al.  Adhesion proteins meet receptors: a common theme? , 2008, Advances in cancer research.

[45]  Christof Niehrs,et al.  Wnt Induces LRP6 Signalosomes and Promotes Dishevelled-Dependent LRP6 Phosphorylation , 2007, Science.

[46]  P. Mannon,et al.  The fundamental basis of inflammatory bowel disease. , 2007, The Journal of clinical investigation.

[47]  P. Herrlich,et al.  Hepatocyte growth factor-induced Ras activation requires ERM proteins linked to both CD44v6 and F-actin. , 2006, Molecular biology of the cell.

[48]  Takeshi Oshima,et al.  Mitogenic Influence of Human R-Spondin1 on the Intestinal Epithelium , 2005, Science.

[49]  Hans Clevers,et al.  Expression pattern of Wnt signaling components in the adult intestine. , 2005, Gastroenterology.

[50]  H. Clevers,et al.  Wnt signalling induces maturation of Paneth cells in intestinal crypts , 2005, Nature Cell Biology.

[51]  Ossama Tawfik,et al.  BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signaling , 2004, Nature Genetics.

[52]  D. Granger,et al.  Impact of Dextran Sulfate Sodium Load on the Severity of Inflammation in Experimental Colitis , 2004, Digestive Diseases and Sciences.

[53]  Pauline Chu,et al.  Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Y. Mély,et al.  Monitoring of the formation and dissociation of polyethylenimine/DNA complexes by two photon fluorescence correlation spectroscopy. , 2003, Biophysical journal.

[55]  B. Roques,et al.  Destabilization of the HIV-1 complementary sequence of TAR by the nucleocapsid protein through activation of conformational fluctuations. , 2003, Journal of molecular biology.

[56]  J. Sleeman,et al.  CD44 is required for two consecutive steps in HGF/c-Met signaling. , 2002, Genes & development.

[57]  Tony Pawson,et al.  β-Catenin and TCF Mediate Cell Positioning in the Intestinal Epithelium by Controlling the Expression of EphB/EphrinB , 2002, Cell.

[58]  Y. Benjamini,et al.  Controlling the false discovery rate in behavior genetics research , 2001, Behavioural Brain Research.

[59]  Richard N. Day,et al.  Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. , 2001, Methods.

[60]  H Clevers,et al.  Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. , 1999, The American journal of pathology.

[61]  P. Bastiaens,et al.  Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. , 1999, Trends in cell biology.

[62]  Hans Clevers,et al.  Drosophila Tcf and Groucho interact to repress Wingless signalling activity , 1998, Nature.

[63]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .