Pathogenesis of multiple sclerosis via environmental and genetic dysregulation of N-glycosylation

Autoimmune diseases such as multiple sclerosis (MS) result from complex and poorly understood interactions of genetic and environmental factors. A central role for T cells in MS is supported by mouse models, association of the major histocompatibility complex region, and association of critical T cell growth regulator genes such as interleukin-2 receptor (IL-2RA) and interleukin-7 receptor (IL-7RA). Multiple environmental factors (vitamin D3 deficiency and metabolism) converge with multiple genetic variants (IL-7RA, IL-2RA, MGAT1, and CTLA-4) to dysregulate Golgi N-glycosylation in MS, resulting in T cell hyperactivity, loss of self-tolerance and in mice, a spontaneous MS-like disease with neurodegeneration. Here, we review the genetic and biological interactions that regulate MS pathogenesis through dysregulation of N-glycosylation and how this may enable individualized therapeutic approaches.

[1]  S. Baranzini,et al.  Multiple sclerosis genetics—is the glass half full, or half empty? , 2010, Nature Reviews Neurology.

[2]  S. Manolagas,et al.  1,25-dihydroxyvitamin D3: a novel immunoregulatory hormone. , 1984, Science.

[3]  Vincent Ferretti,et al.  A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis , 2005, Nature Genetics.

[4]  S. Salvatore,et al.  A pilot study of N‐acetyl glucosamine, a nutritional substrate for glycosaminoglycan synthesis, in paediatric chronic inflammatory bowel disease , 2000, Alimentary pharmacology & therapeutics.

[5]  P. Rieckmann,et al.  A polymorphism in the human cytotoxic T-lymphocyte antigen 4 (CTLA4) gene (exon 1 +49) alters T-cell activation , 2002, Immunogenetics.

[6]  L. Baum,et al.  Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. , 2002, Current opinion in structural biology.

[7]  Elina Hyppönen,et al.  Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study , 2001, The Lancet.

[8]  O. Lambotte,et al.  Identification and Biochemical Characterization of Human Plasma Soluble IL-7R: Lower Concentrations in HIV-1-Infected Patients1 , 2009, The Journal of Immunology.

[9]  J. Dennis,et al.  Complex N-Glycan Number and Degree of Branching Cooperate to Regulate Cell Proliferation and Differentiation , 2007, Cell.

[10]  J. Marth,et al.  Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Simon C. Potter,et al.  Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis , 2011, Nature.

[12]  J. Kurtzke Epidemiologic evidence for multiple sclerosis as an infection , 1993, Clinical Microbiology Reviews.

[13]  C. F. Brewer,et al.  Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. , 2010, Glycobiology.

[14]  J. Dennis,et al.  Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis , 2011, Nature communications.

[15]  C. McKerlie,et al.  N-Glycan Processing Deficiency Promotes Spontaneous Inflammatory Demyelination and Neurodegeneration* , 2007, Journal of Biological Chemistry.

[16]  A. Ascherio,et al.  Vitamin D and multiple sclerosis , 2010, The Lancet Neurology.

[17]  M. Demetriou,et al.  T‐cell growth, cell surface organization, and the galectin–glycoprotein lattice , 2009, Immunological reviews.

[18]  H. Sugihara,et al.  [Proliferation and differentiation of fat cells]. , 1995, Nihon rinsho. Japanese journal of clinical medicine.

[19]  J. Dennis,et al.  Control of T Cell-mediated Autoimmunity by Metabolite Flux to N-Glycan Biosynthesis* , 2007, Journal of Biological Chemistry.

[20]  Y. Ikeda,et al.  UDP-GlcNAc concentration is an important factor in the biosynthesis of beta1,6-branched oligosaccharides: regulation based on the kinetic properties of N-acetylglucosaminyltransferase V. , 2002, Glycobiology.

[21]  W. Willett,et al.  Vitamin D intake and incidence of multiple sclerosis , 2004, Neurology.

[22]  J. Dennis,et al.  Regulation of Cytokine Receptors by Golgi N-Glycan Processing and Endocytosis , 2004, Science.

[23]  N. Risch,et al.  A genetic basis for familial aggregation in multiple sclerosis , 1995, Nature.

[24]  P. Gaffney,et al.  Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4p16-15.2. , 2000, American journal of human genetics.

[25]  Toshihiko Oka,et al.  Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. , 2002, Biochimica et biophysica acta.

[26]  G. Ebers,et al.  Genetic epidemiology: the use of old and new tools for multiple sclerosis , 2008, Trends in Neurosciences.

[27]  J. Dennis,et al.  Metabolism, Cell Surface Organization, and Disease , 2009, Cell.

[28]  M. Demetriou,et al.  Lateral Compartmentalization of T Cell Receptor Versus CD45 by Galectin-N-Glycan Binding and Microfilaments Coordinate Basal and Activation Signaling* , 2007, Journal of Biological Chemistry.

[29]  W. L. Benedict,et al.  Multiple Sclerosis , 2007, Journal - Michigan State Medical Society.

[30]  H. Harbo,et al.  Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. , 2007, Nature genetics.

[31]  David E. Anderson,et al.  IL2RA Genetic Heterogeneity in Multiple Sclerosis and Type 1 Diabetes Susceptibility and Soluble Interleukin-2 Receptor Production , 2009, PLoS genetics.

[32]  P. Menheere,et al.  Vitamin D as an immune modulator in multiple sclerosis, a review , 2008, Journal of Neuroimmunology.

[33]  Lawrence Steinman,et al.  Multiple sclerosis: a two-stage disease , 2001, Nature Immunology.

[34]  A. Verma,et al.  Risk Alleles for Multiple Sclerosis Identified by a Genomewide Study , 2008 .

[35]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[36]  J. Todd,et al.  Linkage on chromosome 3 of autoimmune diabetes and defective Fc receptor for IgG in NOD mice. , 1993, Science.

[37]  J. Paulson Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis , 2007 .

[38]  M. Spitz,et al.  Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. , 2008, American journal of human genetics.

[39]  J M Lemire,et al.  1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. , 1991, The Journal of clinical investigation.

[40]  C. Polychronakos,et al.  A Common Autoimmunity Predisposing Signal Peptide Variant of the Cytotoxic T-lymphocyte Antigen 4 Results in Inefficient Glycosylation of the Susceptibility Allele* , 2002, The Journal of Biological Chemistry.

[41]  M. Filippi,et al.  MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system , 2005, Journal of Neurology.

[42]  M. Demetriou,et al.  Interleukin‐2, Interleukin‐7, T cell‐mediated autoimmunity, and N‐glycosylation , 2012, Annals of the New York Academy of Sciences.

[43]  L. Steinman A rush to judgment on Th17 , 2008, The Journal of experimental medicine.

[44]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[45]  D. Paty,et al.  A population-based study of multiple sclerosis in twins. , 1986, The New England journal of medicine.

[46]  David E. Anderson,et al.  Soluble IL-2RA Levels in Multiple Sclerosis Subjects and the Effect of Soluble IL-2RA on Immune Responses1 , 2009, The Journal of Immunology.

[47]  H. Coller,et al.  The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. , 2010, Genes & development.

[48]  M. King,et al.  Genetic Heterogeneity in Human Disease , 2010, Cell.

[49]  Rohit Bakshi,et al.  Gray matter involvement in multiple sclerosis , 2007, Neurology.

[50]  A. Kuno,et al.  Polylactosamine on glycoproteins influences basal levels of lymphocyte and macrophage activation , 2007, Proceedings of the National Academy of Sciences.

[51]  R. A. Bailey,et al.  Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes , 2007, Nature Genetics.

[52]  T. Malek,et al.  The biology of interleukin-2. , 2008, Annual review of immunology.

[53]  David B. Goldstein,et al.  Rare Variants Create Synthetic Genome-Wide Associations , 2010, PLoS biology.

[54]  G. Rabinovich,et al.  Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 , 2009, Nature Immunology.

[55]  Silke Schmidt,et al.  Interleukin 7 receptor α chain ( IL7R ) shows allelic and functional association with multiple sclerosis , 2007, Nature Genetics.

[56]  C. Ware,et al.  Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice , 1994, The Journal of experimental medicine.

[57]  H. Gabius,et al.  Galectin-3 Precipitates as a Pentamer with Synthetic Multivalent Carbohydrates and Forms Heterogeneous Cross-linked Complexes* , 2004, Journal of Biological Chemistry.

[58]  M. Oldstone Molecular mimicry and autoimmune disease , 1987, Cell.

[59]  H. DeLuca,et al.  Oral administration of 1,25-dihydroxyvitamin D3 completely protects NOD mice from insulin-dependent diabetes mellitus. , 2003, Archives of biochemistry and biophysics.

[60]  R. Holmdahl,et al.  Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis , 1995, Nature Genetics.

[61]  J. Dennis,et al.  N-Acetylglucosaminyltransferase V (Mgat5)-Mediated N-Glycosylation Negatively Regulates Th1 Cytokine Production by T Cells1 , 2004, The Journal of Immunology.

[62]  C. Mayne,et al.  1,25‐Dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis , 2011, European journal of immunology.

[63]  Silke Schmidt,et al.  Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. , 2004, American journal of human genetics.

[64]  Stephen L. Hauser,et al.  Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis , 2010, Nature.

[65]  J. Noseworthy Progress in determining the causes and treatment of multiple sclerosis , 1999, Nature.

[66]  K. Mossman The Wellcome Trust Case Control Consortium, U.K. , 2008 .

[67]  H. Schachter,et al.  The 'yellow brick road' to branched complex N-glycans. , 1991, Glycobiology.

[68]  J. Ioannidis,et al.  CTLA-4 gene polymorphisms and susceptibility to type 1 diabetes mellitus: a HuGE Review and meta-analysis. , 2005, American journal of epidemiology.

[69]  T. Reich,et al.  A perspective on epistasis: limits of models displaying no main effect. , 2002, American journal of human genetics.

[70]  B. Choudhury,et al.  N-Acetylglucosamine Inhibits T-helper 1 (Th1)/T-helper 17 (Th17) Cell Responses and Treats Experimental Autoimmune Encephalomyelitis* , 2011, The Journal of Biological Chemistry.

[71]  P. Bagos,et al.  No evidence for association of CTLA-4 gene polymorphisms with the risk of developing multiple sclerosis: a meta-analysis , 2007, Multiple sclerosis.

[72]  J. Marth,et al.  N-glycan branching requirement in neuronal and postnatal viability. , 2004, Glycobiology.

[73]  Stephan Beck,et al.  A second major histocompatibility complex susceptibility locus for multiple sclerosis , 2007, Annals of neurology.

[74]  J. Dennis,et al.  Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation , 2001, Nature.

[75]  S. Kornfeld,et al.  Assembly of asparagine-linked oligosaccharides. , 1985, Annual review of biochemistry.