Design an adaptive sliding mode controller for drive-response synchronization of two different uncertain fractional-order chaotic systems with fully unknown parameters

Abstract In this paper, design an adaptive sliding mode controller (ASMC) for master–slave synchronization of two different fractional-order chaotic systems with fully unknown parameters, uncertainties and external disturbances is proposed. The bounds of the unknown parameters, uncertainties and external disturbances are assumed to be unknown in advance. Appropriate adaptive laws are designed to tackle the unknown parameters, uncertainties and external disturbances. Based on the adaptive laws, the ASMC is constructed in order to ensure the occurrence of the sliding motion and synchronization of two different fractional-order systems. The analytical conditions for synchronization of the systems are obtained by utilizing Laplace transform. Finally, numerical examples are provided to illustrate the effectiveness of the proposed ASMC scheme.

[1]  Wang Li,et al.  Robust stability analysis for a class of fractional order systems with uncertain parameters , 2011, J. Frankl. Inst..

[2]  Zuomao Yan,et al.  Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay , 2011, J. Frankl. Inst..

[3]  Hamid Reza Momeni,et al.  Adaptive sliding mode control of chaotic dynamical systems with application to synchronization , 2010, Math. Comput. Simul..

[4]  Piotr Ostalczyk Fundamental properties of the fractional-order discrete-time integrator , 2003, Signal Process..

[5]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[6]  A.J. Garrido,et al.  An adaptive sliding mode control law for induction motors using field oriented control theory , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[7]  Mohammad Pourmahmood Aghababa,et al.  A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances , 2012, Appl. Math. Comput..

[8]  M. Haeri,et al.  Synchronization of chaotic fractional-order systems via active sliding mode controller , 2008 .

[9]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[10]  Junguo Lu,et al.  Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal , 2006 .

[11]  M. P. Aghababa Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique , 2012 .

[12]  I. Podlubny Fractional differential equations , 1998 .

[13]  Chun Yin,et al.  Design PD controller for master–slave synchronization of chaotic Lur’e systems with sector and slope restricted nonlinearities ☆ , 2011 .

[14]  Ruoxun Zhang,et al.  Adaptive synchronization of fractional-order chaotic systems via a single driving variable , 2011 .

[15]  S. Bhalekar,et al.  Synchronization of different fractional order chaotic systems using active control , 2010 .

[16]  Mohammad Haeri,et al.  On robust stability of LTI fractional-order delay systems of retarded and neutral type , 2010, Autom..

[17]  Nasser Sadati,et al.  Adaptive multi-model sliding mode control of robotic manipulators using soft computing , 2008, Neurocomputing.

[18]  Ravi P. Agarwal,et al.  Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations , 2010 .

[19]  Sara Dadras,et al.  Control of a fractional-order economical system via sliding mode , 2010 .

[20]  Yaolin Jiang,et al.  Generalized projective synchronization of fractional order chaotic systems , 2008 .

[21]  Shouming Zhong,et al.  Design of sliding mode controller for a class of fractional-order chaotic systems , 2012 .

[22]  Yangquan Chen,et al.  Necessary and sufficient stability condition of fractional-order interval linear systems , 2008, Autom..

[23]  Reza Ghaderi,et al.  Sliding mode synchronization of an uncertain fractional order chaotic system , 2010, Comput. Math. Appl..

[24]  Yangquan Chen,et al.  Application of numerical inverse Laplace transform algorithms in fractional calculus , 2011, J. Frankl. Inst..

[25]  Kehui Sun,et al.  Chaos synchronization between two different fractional-order hyperchaotic systems , 2011 .

[26]  Sohrab Khanmohammadi,et al.  Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller , 2011 .

[27]  Bijan Ranjbar Sahraei,et al.  Adaptive sliding mode control in a novel class of chaotic systems , 2010 .

[28]  A. E. Matouk,et al.  Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol–Duffing circuit , 2011 .

[29]  Chien-Cheng Tseng,et al.  Computation of fractional derivatives using Fourier transform and digital FIR differentiator , 2000, Signal Process..

[30]  Wei Zhu,et al.  Function projective synchronization for fractional-order chaotic systems , 2011 .

[31]  Reza Ghaderi,et al.  Chaotic fractional-order Coullet system: Synchronization and control approach , 2010 .

[32]  George A. Anastassiou,et al.  Principles of delta fractional calculus on time scales and inequalities , 2010, Math. Comput. Model..

[33]  Yangquan Chen,et al.  Fractional order [proportional derivative] controller for a class of fractional order systems , 2009, Autom..

[34]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[35]  Mohammad Saleh Tavazoei,et al.  Robust synchronization of perturbed Chen's fractional-order chaotic systems , 2011 .

[36]  M. P. Aghababa Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller , 2012 .

[37]  M. P. Aghababa,et al.  Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique , 2011 .

[38]  Yangquan Chen,et al.  Robust controllability of interval fractional order linear time invariant systems , 2006, Signal Process..