Data hiding based on image texture classification

In this paper, a new pattern-based fragile, semi-blind, spatial domain data hiding scheme is proposed. The Local Binary Pattern texture classification approach is used, in order to transparently and securely embed secret data into an image. Pixel values are modified in such a way that the texture satisfies the message requirements. The method is thoroughly studied and compared to other techniques in spatial domain in terms of capacity and image quality. The scheme performs well in images with smooth areas and can be used for authentication, tamper proofing, and secret communications.

[1]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Yun Q. Shi,et al.  Reversible Data Hiding , 2003, IWDW.

[3]  Müjdat Çetin,et al.  Shape and data driven texture segmentation using local binary patterns , 2007, 2007 15th European Signal Processing Conference.

[4]  Yao Zhao,et al.  Improved Adaptive LSB Steganography Based on Chaos and Genetic Algorithm , 2010, EURASIP J. Adv. Signal Process..

[5]  Jessica J. Fridrich,et al.  Lossless Data Embedding—New Paradigm in Digital Watermarking , 2002, EURASIP J. Adv. Signal Process..

[6]  Thierry Pun,et al.  Information-theoretic Data-hiding: Recent Achievements and Open Problems 5 , 2004 .

[7]  Lee-Ming Cheng,et al.  Hiding data in images by simple LSB substitution , 2004, Pattern Recognit..

[8]  Shigeru Kuriyama,et al.  Data-Embeddable Texture Synthesis , 2007, Smart Graphics.

[9]  Ingemar J. Cox,et al.  Secure spread spectrum watermarking for multimedia , 1997, IEEE Trans. Image Process..

[10]  Athanassios N. Skodras,et al.  On the use of the discrete Pascal transform in hiding data in images , 2010, Photonics Europe.

[11]  Célia A. Zorzo Barcelos,et al.  Enhanced Watermarking Scheme Based on Texture Analysis , 2006, ACIVS.

[12]  Paul Scheunders,et al.  Advanced Concepts for Intelligent Vision Systems, 8th International Conference, ACIVS 2006, Antwerp, Belgium, September 18-21, 2006, Proceedings , 2006, ACIVS.

[13]  Min-Shiang Hwang,et al.  Data Hiding: Current Status and Key Issues , 2007, Int. J. Netw. Secur..

[14]  Alex ChiChung Kot,et al.  Pattern-Based Data Hiding for Binary Image Authentication by Connectivity-Preserving , 2007, IEEE Transactions on Multimedia.

[15]  Patricia A. Lafferty,et al.  Texture-based steganalysis: results for color images , 2004, SPIE Optics + Photonics.

[16]  Chin-Chen Chang,et al.  Image hiding scheme with modulus function and dynamic programming strategy on partitioned pixels , 2006, Pattern Recognit..

[17]  Jun Tian,et al.  Reversible data embedding using a difference expansion , 2003, IEEE Trans. Circuits Syst. Video Technol..

[18]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[19]  Jianmin Jiang,et al.  Data hiding approach for efficient image indexing , 2002 .

[20]  Cheng-Hsing Yang,et al.  Varied PVD + LSB evading detection programs to spatial domain in data embedding systems , 2010, J. Syst. Softw..

[21]  Yulin Wang,et al.  Blind image data hiding based on self reference , 2004, Pattern Recognit. Lett..

[22]  Athanassios N. Skodras,et al.  High capacity reversible data hiding using overlapping difference expansion , 2009, 2009 10th Workshop on Image Analysis for Multimedia Interactive Services.

[23]  Karim Faez,et al.  Image Hiding by Using Genetic Algorithm and LSB Substitution , 2010, ICISP.

[24]  Andreas Westfeld,et al.  F5-A Steganographic Algorithm , 2001, Information Hiding.