Estimation Fusion Algorithm

[1]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[2]  Yuan Gao,et al.  Self-tuning decoupled information fusion Wiener state component filters and their convergence , 2008, Autom..

[3]  Jeffrey K. Uhlmann,et al.  A non-divergent estimation algorithm in the presence of unknown correlations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[4]  Chongzhao Han,et al.  Optimal linear estimation fusion .I. Unified fusion rules , 2003, IEEE Trans. Inf. Theory.

[5]  Ya-Xiang Yuan,et al.  Optimization theory and methods , 2006 .

[6]  C. J. Harris,et al.  Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion , 2001 .

[7]  Jeffrey K. Uhlmann,et al.  General data fusion for estimates with unknown cross covariances , 1996, Defense, Security, and Sensing.

[8]  Chuang Li,et al.  Multi-model information fusion Kalman filtering and white noise deconvolution , 2010, Inf. Fusion.

[9]  Yunmin Zhu,et al.  The optimality for the distributed Kalman filtering fusion with feedback , 2001, Autom..

[10]  N. A. Carlson Federated square root filter for decentralized parallel processors , 1990 .

[11]  C. Chang,et al.  Kalman filter algorithms for a multi-sensor system , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[12]  Jeffrey K. Uhlmann,et al.  Covariance consistency methods for fault-tolerant distributed data fusion , 2003, Inf. Fusion.

[13]  Yaakov Bar-Shalom,et al.  The Effect of the Common Process Noise on the Two-Sensor Fused-Track Covariance , 1986, IEEE Transactions on Aerospace and Electronic Systems.