Highly Efficient Catalyzed by Imidazolium-Based Dual-Sulfonic Acid Functionalized Ionic Liquids for Liquid Phase Beckmann Rearrangement: Experiments and Cosmo-Rs Calculations

[1]  M. Moniruzzaman,et al.  Ionic liquid assisted nanocellulose production from microcrystalline cellulose: Correlation between cellulose solubility and nanocellulose yield via COSMO-RS prediction , 2022, Journal of Molecular Liquids.

[2]  R. Bourzami,et al.  Physical, chemical and antibacterial properties of 1-methyl-3-(4-vinylbenzyl) imidazol-3-ium chloride ionic liquid: Experimental and ab-initio analysis , 2022, Journal of Molecular Structure.

[3]  Shiwei Liu,et al.  High–Yield and High–Efficiency Conversion of Cyclohexanone Oxime to ε-Caprolactam in a Green and Facile Reaction Process over Deep Eutectic Solvents , 2022, Chemical Engineering Science.

[4]  Siqi Jiang,et al.  Solubility of Isobutane in H2SO4 by the COSMO-RS Model and Mechanisms for Additives to Enhance the H2SO4 Performance , 2022, Industrial & Engineering Chemistry Research.

[5]  Siqi Jiang,et al.  Theoretical predictions of compatibility of polyoxymethylene dimethyl ethers with diesel fuels and diesel additives , 2022, Fuel.

[6]  J. Keasling,et al.  In silico COSMO-RS predictive screening of ionic liquids for the dissolution of plastic , 2022, Green Chemistry.

[7]  Haining Liu,et al.  Efficient separation of boron from salt lake brine using a novel flotation agent synthesized from NMDG and 1-bromooctadecane , 2021 .

[8]  Yanrong Liu,et al.  Screening of alternative solvent ionic liquids for artemisinin: COSMO-RS prediction and experimental verification , 2021 .

[9]  T. Ryan,et al.  Imidazolium-based ionic liquids as additives to preserve the Enhanced Green Fluorescent Protein fluorescent activity , 2021, Green Chemical Engineering.

[10]  Lifang Chen,et al.  Prediction of CO2 solubility in deep eutectic solvents using random forest model based on COSMO-RS-derived descriptors , 2021, Green Chemical Engineering.

[11]  Liejin Guo,et al.  Response surface methodology to optimize the conditions for Enterococcus faecium YA002 producing H2 from xylose , 2020 .

[12]  Shuang Liu,et al.  Synthesis of mesoporous silicalite-1 zeolite for the vapor phase Beckmann rearrangement of cyclohexanone oxime , 2020 .

[13]  Mengjia Liu,et al.  In situ sulfonic acid-functionalized MIL-101(Cr) catalyzed liquid-phase Beckmann rearrangement of cyclohexanone oxime , 2020 .

[14]  Hongyan He,et al.  Protic vs aprotic ionic liquid for CO2 fixation: A simulation study , 2020 .

[15]  K. Hu,et al.  Mg-O Bridged Polypyrrole/g-C3N4 Nanocomposites as Efficient Visible-light Catalysts for Hydrogen Evolution. , 2020, ChemSusChem.

[16]  Zhaoyou Zhu,et al.  Screening of Imidazole Ionic Liquids for Separating the Acetone–n-Hexane Azeotrope by COSMO-SAC Simulations and Experimental Verification , 2020 .

[17]  Jun Gao,et al.  A Brief Review of the Prediction of Liquid–Liquid Equilibrium of Ternary Systems Containing Ionic Liquids by the COSMO-SAC Model , 2019, Journal of Solution Chemistry.

[18]  Kai Wang,et al.  A modified mixed‐acid catalytic system for Beckmann rearrangement of cyclohexanone oxime , 2019, AIChE Journal.

[19]  A. C. Marr,et al.  Heterogenized ionic liquid-metal oxide hybrids: enhanced catalytic activity in the liquid-phase Beckmann rearrangement , 2018, ACS Sustainable Chemistry & Engineering.

[20]  Zhigang Lei,et al.  Parameterization of COSMO-RS model for ionic liquids , 2018, Green Energy & Environment.

[21]  C. Stampfl,et al.  Acidity enhanced [Al]MCM-41 via ultrasonic irradiation for the Beckmann rearrangement of cyclohexanone oxime to ɛ-caprolactam , 2018 .

[22]  Wei Wu,et al.  Green Production Technology of the Monomer of Nylon-6: Caprolactam , 2017 .

[23]  Jun Wang,et al.  Direct synthesis of sulfonic group tethered mesoporous poly(ionic liquid) for catalyzing deoximation reactions , 2017 .

[24]  R. Vekariya A review of ionic liquids: Applications towards catalytic organic transformations , 2017 .

[25]  A. Meyer,et al.  Predictive screening of ionic liquids for dissolving cellulose and experimental verification , 2016 .

[26]  Yanji Wang,et al.  Reactivity of hydroxylamine ionic liquid salts in the direct synthesis of caprolactam from cyclohexanone under mild conditions , 2016 .

[27]  B. Weckhuysen,et al.  NbOx/SiO2 in the gas-phase Beckmann rearrangement of cyclohexanone oxime to epsilon-caprolactam: Influence of calcination temperature, niobia loading and silylation post-treatment , 2016 .

[28]  Jun Wang,et al.  In situ functionalized sulfonic copolymer toward recyclable heterogeneous catalyst for efficient Beckmann rearrangement of cyclohexanone oxime , 2016 .

[29]  A. Bhaumik,et al.  Bismuth supported SBA-15 catalyst for vapour phase Beckmann rearrangement reaction of cyclohexanone oxime to ɛ-caprolactam , 2015 .

[30]  Yuanyuan Xu,et al.  A novel hydroxylamine ionic liquid salt resulting from the stabilization of NH2OH by a SO3H-functionalized ionic liquid. , 2015, Chemical communications.

[31]  B. Finlayson‐Pitts,et al.  Infrared studies of the reaction of methanesulfonic acid with trimethylamine on surfaces. , 2014, Environmental science & technology.

[32]  R. Srivastava,et al.  A simple, eco-friendly, and recyclable bi-functional acidic ionic liquid catalysts for Beckmann rearrangement , 2013 .

[33]  V. Parcha,et al.  Design Expert Supported Mathematical Optimization and Predictability Study of Buccoadhesive Pharmaceutical Wafers of Loratadine , 2013, BioMed research international.

[34]  Yu Zhou,et al.  Heterogeneous Beckmann Rearrangements Catalyzed by a Sulfonated Imidazolium Salt of Phosphotungstate , 2013, Catalysis Letters.

[35]  M. Anilkumar,et al.  Gas phase Beckmann rearrangement of cyclohexanone oxime to ɛ-caprolactam over mesoporous, microporous and amorphous Nb2O5/silica catalysts: A comparative study , 2012 .

[36]  S. Yin,et al.  Preparation of Nanosized Silicalite-1 and Its Application in Vapor-Phase Beckmann Rearrangement of Cyclohexanone Oxime , 2012 .

[37]  V. Ragaini,et al.  Reusable task-specific ionic liquids for a clean ε-caprolactam synthesis under mild conditions. , 2010, ChemSusChem.

[38]  A. Corma,et al.  In situ multinuclear solid-state NMR spectroscopy study of Beckmann rearrangement of cyclododecanone oxime in ionic liquids: The nature of catalytic sites , 2010 .

[39]  Kai Leonhard,et al.  Screening of new solvents for artemisinin extraction process using ab initio methodology , 2010 .

[40]  N. R. Shiju,et al.  Cs exchanged phosphotungstic acid as an efficient catalyst for liquid-phase Beckmann rearrangement of oximes , 2009 .

[41]  Zhen Li,et al.  Novel acidic ionic liquids mediated zinc chloride: Highly effective catalysts for the Beckmann rearrangement , 2009 .

[42]  Dae Sung Lee,et al.  Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods. , 2008, Bioresource technology.

[43]  A. Corma,et al.  Nanosized and delayered zeolitic materials for the liquid-phase Beckmann rearrangement of cyclododecanone oxime , 2007 .

[44]  Shiguo Zhang,et al.  Clean Beckmann rearrangement of cyclohexanone oxime in caprolactam-based Brønsted acidic ionic liquids , 2006 .

[45]  M. Poliakoff,et al.  Chemistry: A cleaner way to nylon? , 2005, Nature.

[46]  K. Ishihara,et al.  Cyanuric chloride as a mild and active Beckmann rearrangement catalyst. , 2005, Journal of the American Chemical Society.

[47]  R. Srivastava,et al.  CO2 activation and synthesis of cyclic carbonates and alkyl/aryl carbamates over adenine-modified Ti-SBA-15 solid catalysts , 2005 .

[48]  Y. Kou,et al.  Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. , 2004, Chemical communications.

[49]  H. Olivier-Bourbigou,et al.  Determination of an acidic scale in room temperature ionic liquids. , 2003, Journal of the American Chemical Society.

[50]  M. Arai,et al.  Innovation in a chemical reaction process using a supercritical water microreaction system: environmentally friendly production of epsilon-caprolactam. , 2002, Chemical communications.

[51]  J. Niederer,et al.  ϵ-Caprolactam: new by-product free synthesis routes , 2001 .

[52]  Bo-Qing Xu,et al.  High temperature calcination for a highly efficient and regenerable B2O3/ZrO2 catalyst for the synthesis of ε-caprolactam , 2000 .