Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows.

Infinite cascades of periodicity hubs were predicted and very recently observed experimentally to organize stable oscillations of some dissipative flows. Here we describe the global mechanism underlying the genesis and organization of networks of periodicity hubs in control parameter space of a simple prototypical flow, namely a Rössler's oscillator. We show that spirals associated with periodicity hubs emerge and accumulate at the folding of certain fractal-like sheaves of Shilnikov homoclinic bifurcations of a common saddle-focus equilibrium. The specific organization of hub networks is found to depend strongly on the interaction between the homoclinic orbits and the global structure of the underlying attractor.

[1]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[2]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[3]  L. P. Šil'nikov,et al.  ON THREE-DIMENSIONAL DYNAMICAL SYSTEMS CLOSE TO SYSTEMS WITH A STRUCTURALLY UNSTABLE HOMOCLINIC CURVE. II , 1972 .

[4]  Stability , 1973 .

[5]  L. A. Belyakov A case of the generation of a periodic motion with homoclinic curves , 1974 .

[6]  O. Rössler CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS , 1979 .

[7]  L. A. Belyakov Bifurcation set in a system with homoclinic saddle curve , 1980 .

[8]  Alain Arneodo,et al.  Possible new strange attractors with spiral structure , 1981 .

[9]  R. Kapral Analysis of flow hysteresis by a one-dimensional map , 1982 .

[10]  Alain Arneodo,et al.  Oscillators with chaotic behavior: An illustration of a theorem by Shil'nikov , 1982 .

[11]  Pierre Gaspard,et al.  What can we learn from homoclinic orbits in chaotic dynamics? , 1983 .

[12]  L. A. Belyakov Bifurcation of systems with homoclinic curve of a saddle-focus with saddle quantity zero , 1984 .

[13]  Raymond Kapral,et al.  Bifurcation phenomena near homoclinic systems: A two-parameter analysis , 1984 .

[14]  Colin Sparrow,et al.  Local and global behavior near homoclinic orbits , 1984 .

[15]  Pierre Gaspard,et al.  Homoclinic orbits and mixed-mode oscillations in far-from-equilibrium systems , 1987 .

[16]  C. Simó On the analytical and numerical approximation of invariant manifolds. , 1990 .

[17]  B. M. Fulk MATH , 1992 .

[18]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[19]  V. V. Bykov,et al.  The bifurcations of separatrix contours and chaos , 1993 .

[20]  Jason A. C. Gallas,et al.  Dissecting shrimps: results for some one-dimensional physical models , 1994 .

[21]  J. A. Wheeler,et al.  Waves at walls, corners, heights: Looking for simplicity , 1995 .

[22]  Celso Grebogi,et al.  Bifurcation rigidity , 1999 .

[23]  Gian Mario Maggio,et al.  Bifurcations in the Colpitts oscillator: from Theory to Practice , 2003, Int. J. Bifurc. Chaos.

[24]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .

[25]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[26]  Cristian Bonatto,et al.  Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser. , 2005, Physical review letters.

[27]  Francesco Marin,et al.  Chaotically spiking canards in an excitable system with 2D inertial fast manifolds. , 2007, Physical review letters.

[28]  J. Gallas,et al.  Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. , 2008, Physical review letters.

[29]  Hendrik Broer,et al.  Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance ‘bubble’ , 2008 .

[30]  Edward N. Lorenz,et al.  Compound windows of the Hénon-map , 2008 .

[31]  F. Tito Arecchi,et al.  Chaotic spiking and incomplete homoclinic scenarios in semiconductor lasers with optoelectronic feedback , 2009 .

[32]  J. G. Freire,et al.  Relative abundance and structure of chaotic behavior: the nonpolynomial Belousov-Zhabotinsky reaction kinetics. , 2009, The Journal of chemical physics.

[33]  Hendrik Broer,et al.  Routes to chaos in the Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms , 2007 .

[34]  Vassilios Kovanis,et al.  Labyrinth bifurcations in optically injected diode lasers , 2010 .

[35]  Jason A. C. Gallas,et al.  The Structure of Infinite Periodic and Chaotic Hub Cascades in Phase Diagrams of Simple Autonomous Flows , 2010, Int. J. Bifurc. Chaos.

[36]  S. F. Abdalah,et al.  Excitability of periodic and chaotic attractors in semiconductor lasers with optoelectronic feedback , 2010 .

[37]  J. G. Freire,et al.  Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Henk A. Dijkstra,et al.  New nonlinear mechanisms of midlatitude atmospheric low-frequency variability , 2010 .

[39]  Ruedi Stoop,et al.  Real-world existence and origins of the spiral organization of shrimp-shaped domains. , 2010, Physical review letters.

[40]  Jason A. C. Gallas,et al.  How similar is the performance of the cubic and the piecewise-linear circuits of Chua? , 2010 .

[41]  Carles Simó,et al.  Chaos and quasi-periodicity in diffeomorphisms of the solid torus , 2010 .

[42]  F. Marino,et al.  Chaotically spiking attractors in suspended-mirror optical cavities. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  J. G. Freire,et al.  Stern-Brocot trees in cascades of mixed-mode oscillations and canards in the extended Bonhoeffer-van der Pol and the FitzHugh-Nagumo models of excitable systems , 2011 .

[44]  J. G. Freire,et al.  Stern-Brocot trees in the periodicity of mixed-mode oscillations. , 2011, Physical chemistry chemical physics : PCCP.

[45]  J. Gallas,et al.  Self-organized distribution of periodicity and chaos in an electrochemical oscillator. , 2011, Physical chemistry chemical physics : PCCP.

[46]  A Celestino,et al.  Ratchet transport and periodic structures in parameter space. , 2011, Physical review letters.

[47]  Hendrik Broer,et al.  Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems , 2011 .