A lyapunov function and global properties for sir and seir epidemiological models with nonlinear incidence.

Explicit Lyapunov functions for SIR and SEIR compartmental epidemic models with nonlinear incidence of the form betaI(p)S(q) for the case p </= 1 are constructed. Global stability of the models is thereby established.

[1]  H. Hethcote,et al.  Some epidemiological models with nonlinear incidence , 1991, Journal of mathematical biology.

[2]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[3]  Y. Iwasa,et al.  Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models , 1986, Journal of mathematical biology.

[4]  Herbert W. Hethcote,et al.  An epidemiological model with a delay and a nonlinear incidence rate , 1989, Journal of mathematical biology.

[5]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[6]  Graeme C. Wake,et al.  Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models , 2002, Appl. Math. Lett..

[7]  P. van den Driessche,et al.  Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population , 2003 .

[8]  P. Glendinning,et al.  Melnikov analysis of chaos in a simple epidemiological model , 1997, Journal of mathematical biology.

[9]  Philip K Maini,et al.  Non-linear incidence and stability of infectious disease models. , 2005, Mathematical medicine and biology : a journal of the IMA.

[10]  Andrei Korobeinikov,et al.  Lyapunov functions and global properties for SEIR and SEIS epidemic models. , 2004, Mathematical medicine and biology : a journal of the IMA.

[11]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[12]  Andrei Korobeinikov,et al.  Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with Non-Linear Transmission , 2006, Bulletin of mathematical biology.

[13]  S. Levin,et al.  Dynamical behavior of epidemiological models with nonlinear incidence rates , 1987, Journal of mathematical biology.

[14]  M. Lizana,et al.  Multiparametric bifurcations for a model in epidemiology , 1996, Journal of mathematical biology.

[15]  P. Driessche,et al.  A disease transmission model in a nonconstant population , 1993, Journal of mathematical biology.