On the Achievable Throughput of Energy-Harvesting Nanonetworks in the Terahertz Band

In this paper, the maximum achievable throughput of electromagnetic nanonetworks in the terahertz (THz) band (0.1–10 THz) is comprehensively investigated. On the one hand, the peculiarities of the THz-band channel are taken into account by capturing the impact of the molecular absorption loss on the signal propagation. On the other hand, a two-state medium access control protocol is utilized to reflect the behavior of energy-harvesting nano-devices with constrained harvesting rate and maximum transmission power <inline-formula> <tex-math notation="LaTeX">$P_{0}$ </tex-math></inline-formula>. An ad-hoc nanonetwork is considered with <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> identical randomly located nano-devices, and each is capable of utilizing <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula> Hz of bandwidth. When the node density of nanonetworks is low, the achievable throughput is <inline-formula> <tex-math notation="LaTeX">$O (W P_{0} ( { (n\log n )^{({\alpha _{spr}-1}/{2})}}/{\exp (({ \alpha _{abs}}/{({n \log n})^{1/2}} ))}) )^{({1}/{2})}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$\alpha _{spr}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\alpha _{abs}$ </tex-math></inline-formula> refer to the spreading loss coefficient and the molecular absorption loss coefficient. When the node density of nanonetworks is very high, the interference among nano-devices governs the network behavior and the achievable throughput becomes <inline-formula> <tex-math notation="LaTeX">$O (({W^{2} P_{0}/ {I(n)}}) ({ (n\log n )^{({\alpha _{spr}-1}/{2})}}/~{\exp (({ \alpha _{abs}}/{({n \log n})^{1/2}}) )} ))^{({1}/{2})}$ </tex-math></inline-formula>. For both the cases, the upper boundaries of the achievable throughput are analytically derived, and the numerical results are provided. Numerical results illustrate that the molecular absorption loss plays the main role when the nanonetwork is sparse, and the interference dominates when the nanonetwork node density is very high.

[1]  Ian F. Akyildiz,et al.  Channel Modeling and Capacity Analysis for Electromagnetic Wireless Nanonetworks in the Terahertz Band , 2011, IEEE Transactions on Wireless Communications.

[2]  Neung-Hyung Lee,et al.  MAC sleep mode control considering downlink traffic pattern and mobility , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[3]  Sajal K. Das,et al.  DRIH-MAC: A Distributed Receiver-Initiated Harvesting-Aware MAC for Nanonetworks , 2015, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[4]  Yong Pei,et al.  On the capacity improvement of ad hoc wireless networks using directional antennas , 2003, MobiHoc '03.

[5]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[6]  J. Jornet,et al.  PHLAME: A physical layer aware MAC protocol for electromagnetic nanonetworks , 2011, 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[7]  Xin-Wei Yao,et al.  TAB-MAC: Assisted beamforming MAC protocol for Terahertz communication networks , 2016, Nano Commun. Networks.

[8]  Shuang-Hua Yang,et al.  Joint Parameter Optimization for Perpetual Nanonetworks and Maximum Network Capacity , 2015, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[9]  Rohit Negi,et al.  Capacity of power constrained ad-hoc networks , 2004, IEEE INFOCOM 2004.

[10]  Ian F. Akyildiz,et al.  Low-Weight Channel Coding for Interference Mitigation in Electromagnetic Nanonetworks in the Terahertz Band , 2011, 2011 IEEE International Conference on Communications (ICC).

[11]  Raghuraman Mudumbai,et al.  Interference Analysis for Highly Directional 60-GHz Mesh Networks: The Case for Rethinking Medium Access Control , 2011, IEEE/ACM Transactions on Networking.

[12]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[13]  Zhong Lin Wang,et al.  Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems , 2012 .

[14]  Zhong-Lin Wang Towards Self‐Powered Nanosystems: From Nanogenerators to Nanopiezotronics , 2008 .

[15]  Ian F. Akyildiz,et al.  Terahertz band: Next frontier for wireless communications , 2014, Phys. Commun..

[16]  Ian F. Akyildiz,et al.  Graphene-based Plasmonic Nano-Antenna for Terahertz Band Communication in Nanonetworks , 2013, IEEE Journal on Selected Areas in Communications.

[17]  Yingbo Hua,et al.  Capacity of Ultra-Wideband Power-Constrained Ad Hoc Networks , 2008, IEEE Transactions on Information Theory.

[18]  Ian F. Akyildiz,et al.  Femtosecond-Long Pulse-Based Modulation for Terahertz Band Communication in Nanonetworks , 2014, IEEE Transactions on Communications.

[19]  J. M. Jornet,et al.  Joint Energy Harvesting and Communication Analysis for Perpetual Wireless Nanosensor Networks in the Terahertz Band , 2012, IEEE Transactions on Nanotechnology.

[20]  Kyung Sup Kwak,et al.  Enhanced Rate Division Multiple Access for Electromagnetic Nanonetworks , 2016, IEEE Sensors Journal.

[21]  Ian F. Akyildiz,et al.  Multi-Ray Channel Modeling and Wideband Characterization for Wireless Communications in the Terahertz Band , 2015, IEEE Transactions on Wireless Communications.

[22]  Yevgeni Koucheryavy,et al.  Capacity and throughput analysis of nanoscale machine communication through transparency windows in the terahertz band , 2014, Nano Commun. Networks.

[23]  Eitan Altman,et al.  Optimal Control of Sleep Periods for Wireless Terminals , 2011, IEEE Journal on Selected Areas in Communications.

[24]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[25]  Yuguang Fang,et al.  The Capacity of Wireless Ad Hoc Networks Using Directional Antennas , 2011, IEEE Transactions on Mobile Computing.

[26]  Brendan Jennings,et al.  Performance Analysis of Plant Monitoring Nanosensor Networks at THz Frequencies , 2016, IEEE Internet of Things Journal.

[27]  Dongliang Xie,et al.  Tradeoff Between Throughput and Energy Consumption in Multirate Wireless Sensor Networks , 2013, IEEE Sensors Journal.

[28]  Ian F. Akyildiz,et al.  Electromagnetic wireless nanosensor networks , 2010, Nano Commun. Networks.