Crystal Structure of CC Chemokine Receptor 2A in Complex with an Orthosteric Antagonist Provides Insights for the Design of Selective Antagonists.

[1]  S. Iwata,et al.  Serial femtosecond crystallography at the SACLA: breakthrough to dynamic structural biology , 2018, Biophysical Reviews.

[2]  Vadim Cherezov,et al.  Serial Femtosecond Crystallography of G Protein-Coupled Receptors. , 2018, Annual review of biophysics.

[3]  T. Hatsui,et al.  Crystal Structures of Human Orexin 2 Receptor Bound to the Subtype-Selective Antagonist EMPA. , 2018, Structure.

[4]  Justyna Aleksandra Wojdyla,et al.  DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines , 2018, Journal of synchrotron radiation.

[5]  R. Cheng,et al.  X-ray free electron laser: opportunities for drug discovery. , 2017, Essays in biochemistry.

[6]  R. Abagyan,et al.  Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV , 2017, Immunity.

[7]  I. D. de Esch,et al.  Structural Analysis of Chemokine Receptor–Ligand Interactions , 2017, Journal of medicinal chemistry.

[8]  Ali Jazayeri,et al.  Intracellular allosteric antagonism of the CCR9 receptor , 2016, Nature.

[9]  C. Hamdouchi,et al.  The Discovery, Preclinical, and Early Clinical Development of Potent and Selective GPR40 Agonists for the Treatment of Type 2 Diabetes Mellitus (LY2881835, LY2922083, and LY2922470). , 2016, Journal of medicinal chemistry.

[10]  Ruben Abagyan,et al.  Structure of CC Chemokine Receptor 2 with Orthosteric and Allosteric Antagonists , 2016, Nature.

[11]  Shouhei Mine,et al.  Functional Role of the C-Terminal Amphipathic Helix 8 of Olfactory Receptors and Other G Protein-Coupled Receptors , 2016, International journal of molecular sciences.

[12]  I. Kufareva Chemokines and their receptors: insights from molecular modeling and crystallography. , 2016, Current opinion in pharmacology.

[13]  H. Nar,et al.  Comparative Analysis of Binding Kinetics and Thermodynamics of Dipeptidyl Peptidase-4 Inhibitors and Their Relationship to Structure. , 2016, Journal of medicinal chemistry.

[14]  O. Bunk,et al.  Fast two-dimensional grid and transmission X-ray microscopy scanning methods for visualizing and characterizing protein crystals , 2016, Journal of applied crystallography.

[15]  A. IJzerman,et al.  Evaluation of (4‐Arylpiperidin‐1‐yl)cyclopentanecarboxamides As High‐Affinity and Long‐Residence‐Time Antagonists for the CCR2 Receptor , 2015, ChemMedChem.

[16]  Ezequiel Panepucci,et al.  In meso in situ serial X-ray crystallography of soluble and membrane proteins , 2015, Acta crystallographica. Section D, Biological crystallography.

[17]  D. Veprintsev,et al.  Stabilization of G protein-coupled receptors by point mutations , 2015, Front. Pharmacol..

[18]  H. Weinstein,et al.  A mechanistic role of Helix 8 in GPCRs: Computational modeling of the dopamine D2 receptor interaction with the GIPC1-PDZ-domain. , 2015, Biochimica et biophysica acta.

[19]  A. IJzerman,et al.  When structure-affinity relationships meet structure-kinetics relationships: 3-((Inden-1-yl)amino)-1-isopropyl-cyclopentane-1-carboxamides as CCR2 antagonists. , 2015, European journal of medicinal chemistry.

[20]  R. Solari,et al.  "Chemokine receptors as therapeutic targets: Why aren't there more drugs?". , 2015, European journal of pharmacology.

[21]  A. J. Venkatakrishnan,et al.  Structural basis for chemokine recognition and activation of a viral G protein–coupled receptor , 2014, Science.

[22]  A. IJzerman,et al.  Discovery and Mapping of an Intracellular Antagonist Binding Site at the Chemokine Receptor CCR2 , 2014, Molecular Pharmacology.

[23]  Anthony Ivetac,et al.  High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875 , 2014, Nature.

[24]  A. Christopoulos,et al.  Tyrosine sulfation of chemokine receptor CCR2 enhances interactions with both monomeric and dimeric forms of the chemokine monocyte chemoattractant protein-1 (MCP-1). , 2014, The Journal of Biological Chemistry.

[25]  P. Casarosa,et al.  Molecular basis for the long duration of action and kinetic selectivity of tiotropium for the muscarinic M3 receptor. , 2013, Journal of medicinal chemistry.

[26]  John Saunders,et al.  Structure-kinetic relationships--an overlooked parameter in hit-to-lead optimization: a case of cyclopentylamines as chemokine receptor 2 antagonists. , 2013, Journal of medicinal chemistry.

[27]  A. IJzerman,et al.  Multiple Binding Sites for Small-Molecule Antagonists at the CC Chemokine Receptor 2 , 2013, Molecular Pharmacology.

[28]  Hualiang Jiang,et al.  Structure of the CCR5 Chemokine Receptor–HIV Entry Inhibitor Maraviroc Complex , 2013, Science.

[29]  Albert C. Pan,et al.  Molecular determinants of drug-receptor binding kinetics. , 2013, Drug discovery today.

[30]  P. Carter Progress in the discovery of CC chemokine receptor 2 antagonists, 2009 – 2012 , 2013, Expert opinion on therapeutic patents.

[31]  A. Christopoulos,et al.  Tyrosine Sulfation of Chemokine Receptor CCR2 Enhances Interactions with Both Monomeric and Dimeric Forms of the Chemokine Monocyte Chemoattractant Protein-1 (MCP-1)* , 2013, The Journal of Biological Chemistry.

[32]  R. Horuk,et al.  Chemokine receptor antagonists. , 2012, Journal of medicinal chemistry.

[33]  J. Bower,et al.  The design and synthesis of novel, potent and orally bioavailable N-aryl piperazine-1-carboxamide CCR2 antagonists with very high hERG selectivity. , 2012, Bioorganic & medicinal chemistry letters.

[34]  Joshua M. Kunken,et al.  Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. , 2012, Structure.

[35]  R. Leurs,et al.  Pharmacological modulation of chemokine receptor function , 2012, British journal of pharmacology.

[36]  F. J. Luque,et al.  Shielded hydrogen bonds as structural determinants of binding kinetics: application in drug design. , 2011, Journal of the American Chemical Society.

[37]  P. Scherle,et al.  Discovery of INCB3284, a Potent, Selective, and Orally Bioavailable hCCR2 Antagonist. , 2011, ACS medicinal chemistry letters.

[38]  D. J. Rogier,et al.  Discovery of INCB10820/PF-4178903, a potent, selective, and orally bioavailable dual CCR2 and CCR5 antagonist. , 2011, Bioorganic & medicinal chemistry letters.

[39]  P. Scherle,et al.  Discovery of INCB3344, a potent, selective and orally bioavailable antagonist of human and murine CCR2. , 2010, Bioorganic & medicinal chemistry letters.

[40]  R. Abagyan,et al.  Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists , 2010, Science.

[41]  Jonathan A. Javitch,et al.  Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist , 2010, Science.

[42]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[43]  M. Struthers,et al.  Assessment of chemokine receptor function on monocytes in whole blood: In vitro and ex vivo evaluations of a CCR2 antagonist. , 2010, Journal of immunological methods.

[44]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[45]  W. Kabsch XDS , 2010, Acta crystallographica. Section D, Biological crystallography.

[46]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[47]  N. Vaidehi,et al.  Elucidation of Binding Sites of Dual Antagonists in the Human Chemokine Receptors CCR2 and CCR5 , 2009, Molecular Pharmacology.

[48]  S. Amini,et al.  Monocyte chemoattractant protein-1 (MCP-1): an overview. , 2009, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[49]  Z. Sui,et al.  Recent developments in CCR2 antagonists , 2009, Expert opinion on therapeutic patents.

[50]  P. Slocombe,et al.  Differential involvement of Galpha16 in CC chemokine-induced stimulation of phospholipase Cbeta, ERK, and chemotaxis. , 2008, Cellular signalling.

[51]  Randy J. Read,et al.  Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias , 2008, Acta crystallographica. Section D, Biological crystallography.

[52]  R. Stevens,et al.  Microscale fluorescent thermal stability assay for membrane proteins. , 2008, Structure.

[53]  Randy J. Read,et al.  Dauter Iterative model building , structure refinement and density modification with the PHENIX AutoBuild wizard , 2007 .

[54]  Sung-Hwan Park,et al.  Expression of CCR2A, an isoform of MCP-1 receptor, is increased by MCP-1, CD40 ligand and TGF-β in fibroblast like synoviocytes of patients with RA , 2007, Experimental & Molecular Medicine.

[55]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[56]  G. Butora,et al.  3-Amino-1-alkyl-cyclopentane carboxamides as small molecule antagonists of the human and murine CC chemokine receptor 2. , 2007, Bioorganic & medicinal chemistry letters.

[57]  M. Maccoss,et al.  Discovery of 3-piperidinyl-1-cyclopentanecarboxamide as a novel scaffold for highly potent CC chemokine receptor 2 antagonists. , 2007, Journal of medicinal chemistry.

[58]  Yasushi Tojo,et al.  Structural and Molecular Interactions of CCR5 Inhibitors with CCR5* , 2006, Journal of Biological Chemistry.

[59]  M. Feria,et al.  The CCR2 receptor as a therapeutic target , 2006 .

[60]  Didier Rognan,et al.  A chemogenomic analysis of the transmembrane binding cavity of human G‐protein‐coupled receptors , 2005, Proteins.

[61]  I. Forbes,et al.  CCR2: characterization of the antagonist binding site from a combined receptor modeling/mutagenesis approach. , 2003, Journal of medicinal chemistry.

[62]  Klaus Schittkowski,et al.  EASY-FIT: a software system for data fitting in dynamical systems , 2002 .

[63]  O. Quehenberger,et al.  Differential expression of the isoforms for the monocyte chemoattractant protein-1 receptor, CCR2, in monocytes. , 2002, Biochemical and biophysical research communications.

[64]  D. Figarella-Branger,et al.  CCR2A and CCR2B, the two isoforms of the monocyte chemoattractant protein-1 receptor are up-regulated and expressed by different cell subsets in idiopathic inflammatory myopathies , 2001, Acta Neuropathologica.

[65]  T. Kawano,et al.  Monocyte Chemotactic Protein-1 Receptor CCR2B Is a Glycoprotein That Has Tyrosine Sulfation in a Conserved Extracellular N-Terminal Region , 2000, The Journal of Immunology.

[66]  S. Sanders,et al.  Functional Differences Between Monocyte Chemotactic Protein-1 Receptor A and Monocyte Chemotactic Protein-1 Receptor B Expressed in a Jurkat T Cell , 2000, The Journal of Immunology.

[67]  J L Sussman,et al.  Specific chemical and structural damage to proteins produced by synchrotron radiation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  I. Charo,et al.  The Amino-terminal Domain of CCR2 Is Both Necessary and Sufficient for High Affinity Binding of Monocyte Chemoattractant Protein 1 , 1997, The Journal of Biological Chemistry.

[69]  S. J. Myers,et al.  Organization and Differential Expression of the Human Monocyte Chemoattractant Protein 1 Receptor Gene , 1997, The Journal of Biological Chemistry.

[70]  Huiping Jiang,et al.  Selective G Protein Coupling by C-C Chemokine Receptors (*) , 1996, The Journal of Biological Chemistry.

[71]  S. J. Myers,et al.  Signal Transduction and Ligand Specificity of the Human Monocyte Chemoattractant Protein-1 Receptor in Transfected Embryonic Kidney Cells (*) , 1995, The Journal of Biological Chemistry.

[72]  J. Gong,et al.  Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues , 1995, Journal of Experimental Medicine.

[73]  S. Coughlin,et al.  Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[74]  E. Opas,et al.  Novel 2-aminooctahydrocyclopentalene-3a-carboxamides as potent CCR2 antagonists. , 2013, Bioorganic & medicinal chemistry letters.

[75]  D. Bashford,et al.  Liu F-NMR 19 by-Adrenergic Receptor Characterized 2 β Biased Signaling Pathways in , 2012 .

[76]  M. Struthers,et al.  CCR2 antagonists. , 2010, Current topics in medicinal chemistry.

[77]  R. Horuk,et al.  Chemokine receptor antagonists: overcoming developmental hurdles , 2009, Nature Reviews Drug Discovery.

[78]  V. Cherezov,et al.  Crystallizing membrane proteins using lipidic mesophases , 2009, Nature Protocols.

[79]  L. Gegnas Expert Opinion on Therapeutic Patents , 2000 .

[80]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .