Quantum Key Distribution Highly Sensitive to Eavesdropping

We introduce a new quantum key distribution protocol that uses d-level quantum systems to encode an alphabet with c letters. It has the property that the error rate introduced by an intercept-and-resend attack tends to one as the numbers c and d increase. In dimension d=2, when the legitimate parties use a complete set of three mutually unbiased bases, the protocol achieves a quantum bit error rate of 57.1%. This represents a significant improvement over the 25% quantum bit error rate achieved in the BB84 protocol or 33% in the six-state protocol.

[1]  Muhammad Mubashir Khan,et al.  High error-rate quantum key distribution for long-distance communication , 2009, 0901.3909.

[2]  Stefan Weigert,et al.  Maximal sets of mutually unbiased quantum states in dimension 6 , 2008, 0808.1614.

[3]  Artur Ekert,et al.  Information Gain in Quantum Eavesdropping , 1994 .

[4]  Ekert,et al.  Eavesdropping on quantum-cryptographical systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[5]  Harald Weinfurter,et al.  Secure Communication with a Publicly Known Key , 2001 .

[6]  Gilles Brassard,et al.  Quantum Cryptography, or Unforgeable Subway Tokens , 1982, CRYPTO.

[7]  Wojciech Tadej,et al.  A Concise Guide to Complex Hadamard Matrices , 2006, Open Syst. Inf. Dyn..

[8]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[9]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[10]  Christian Kurtsiefer,et al.  LETTER TO THE EDITOR: Secure communication with single-photon two-qubit states , 2001 .

[11]  Nicolas Gisin,et al.  Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. , 2004, Physical review letters.

[12]  S. Popescu,et al.  Nonlocality as an axiom for quantum theory , 1995, quant-ph/9508009.

[13]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[14]  Stefan Weigert,et al.  All mutually unbiased bases in dimensions two to five , 2009, Quantum Inf. Comput..

[15]  P. Jaming,et al.  A generalized Pauli problem and an infinite family of MUB-triplets in dimension 6 , 2009, 0902.0882.

[16]  岡本 明,et al.  Cryptographic apparatus and method, an encryption system , 2003 .

[17]  J. Schwinger UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[19]  A. Klappenecker,et al.  On approximately symmetric informationally complete positive operator-valued measures and related systems of quantum states , 2005, quant-ph/0503239.

[20]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[21]  Aephraim M. Steinberg,et al.  Improving quantum state estimation with mutually unbiased bases. , 2008, Physical review letters.

[22]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[23]  Wojciech Tadej,et al.  Mubs and Hadamards of Order Six , 2006, quant-ph/0610161.

[24]  L. L. Sanchez-Soto,et al.  Structure of the sets of mutually unbiased bases for N qubits (8 pages) , 2005 .

[25]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[26]  Yuan Liang Lim,et al.  Multiphoton entanglement through a Bell-multiport beam splitter (8 pages) , 2005 .

[27]  S. Brierley,et al.  Constructing Mutually Unbiased Bases in Dimension Six , 2009, 0901.4051.

[28]  Anders Karlsson,et al.  Quantum key distribution using multilevel encoding: security analysis , 2001 .

[29]  N. Gisin,et al.  Optimal Eavesdropping in Quantum Cryptography. I , 1997, quant-ph/9701039.

[30]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[31]  M. Bourennane,et al.  QUANTUM KEY DISTRIBUTION USING MULTILEVEL ENCODING , 2001 .

[32]  H. Bechmann-Pasquinucci,et al.  Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography , 1998, quant-ph/9807041.

[33]  Richard J. Hughes,et al.  Entangled-photon six-state quantum cryptography , 2002 .

[34]  William Hall,et al.  Numerical evidence for the maximum number of mutually unbiased bases in dimension six , 2007 .

[35]  Dominic Mayers,et al.  Unconditional security in quantum cryptography , 1998, JACM.

[36]  Marek Żukowski,et al.  Realizable higher-dimensional two-particle entanglements via multiport beam splitters , 1997 .

[37]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[38]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.