THE ORIGIN AND DISTRIBUTION OF COLD GAS IN THE HALO OF A MILKY-WAY-MASS GALAXY

We analyze an adaptive mesh refinement hydrodynamic cosmological simulation of a Milky-Way-sized galaxy to study the cold gas in the halo. H i observations of the Milky Way and other nearby spirals have revealed the presence of such gas in the form of clouds and other extended structures, which indicates ongoing accretion. We use a high-resolution simulation (136–272 pc throughout) to study the distribution of cold gas in the halo, compare it with observations, and examine its origin. The amount (∼108 M☉ in H i), covering fraction, and spatial distribution of the cold halo gas around the simulated galaxy at z = 0 are consistent with existing observations. At z = 0, the H i mass accretion rate onto the disk is 0.2 M☉ yr−1. We track the histories of the 20 satellites that are detected in H i in the redshift interval 0.5 > z > 0 and find that most of them are losing gas, with a median mass-loss rate per satellite of 3.1 × 10−3 M☉ yr−1. This stripped gas is a significant component of the H i gas seen in the simulation. In addition, we see filamentary material coming into the halo from the intergalactic medium at all redshifts. Most of this gas does not make it directly to the disk, but part of the gas in these structures is able to cool and form clouds. The metallicity of the gas allows us to distinguish between filamentary flows and satellite gas. We find that the former accounts for at least 25%–75% of the cold gas in the halo seen at any redshift analyzed here. Placing constraints on cloud formation mechanisms allows us to better understand how galaxies accrete gas and fuel star formation at z = 0.

[1]  J. X. Prochaska,et al.  The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals , 2011, Science.

[2]  J. Christopher Howk,et al.  A Reservoir of Ionized Gas in the Galactic Halo to Sustain Star Formation in the Milky Way , 2011, Science.

[3]  L. Chomiuk,et al.  TOWARD A UNIFICATION OF STAR FORMATION RATE DETERMINATIONS IN THE MILKY WAY AND OTHER GALAXIES , 2011, 1110.4105.

[4]  G. Bryan,et al.  GAS CONDENSATION IN THE GALACTIC HALO , 2011, 1105.4639.

[5]  J. Prochaska,et al.  Absorption-line systems in simulated galaxies fed by cold streams , 2011, 1103.2130.

[6]  Carnegie Observatories,et al.  PROBING THE INTERGALACTIC MEDIUM/GALAXY CONNECTION. V. ON THE ORIGIN OF Lyα AND O vi ABSORPTION AT z < 0.2 , 2011, 1103.1891.

[7]  J. Bland-Hawthorn,et al.  GAS DEPLETION IN LOCAL GROUP DWARFS ON ∼250 kpc SCALES: RAM PRESSURE STRIPPING ASSISTED BY INTERNAL HEATING AT EARLY TIMES , 2011, 1102.4849.

[8]  J. Peek,et al.  THE GALFA-Hi SURVEY: DATA RELEASE 1 , 2011, 1101.1879.

[9]  F. Fraternali,et al.  The Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey I. Survey description and pilot observations , 2010, 1012.0816.

[10]  J. Tinker,et al.  AN EMPIRICAL CHARACTERIZATION OF EXTENDED COOL GAS AROUND GALAXIES USING Mg ii ABSORPTION FEATURES , 2010, 1004.0705.

[11]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2010, 1001.4538.

[12]  L. Hernquist,et al.  SEEDING THE FORMATION OF COLD GASEOUS CLOUDS IN MILKY WAY-SIZE HALOS , 2009, 0905.2186.

[13]  C. Danforth,et al.  A LARGE RESERVOIR OF IONIZED GAS IN THE GALACTIC HALO: IONIZED SILICON IN HIGH-VELOCITY AND INTERMEDIATE-VELOCITY CLOUDS , 2009, 0904.4901.

[14]  M. Putman,et al.  THE FATE OF HIGH-VELOCITY CLOUDS: WARM OR COLD COSMIC RAIN? , 2009, 0904.1995.

[15]  B. Savage,et al.  THE RELATIONSHIP BETWEEN INTERGALACTIC H i/O vi AND NEARBY (z < 0.017) GALAXIES , 2009, 0903.2259.

[16]  J. Binney,et al.  Do high-velocity clouds form by thermal instability? , 2009, 0902.4525.

[17]  J. Grcevich,et al.  H i IN LOCAL GROUP DWARF GALAXIES AND STRIPPING BY THE GALACTIC HALO , 2009, 0901.4975.

[18]  T. Westmeier,et al.  Relics of structure formation: extra-planar gas and high-velocity clouds around the Andromeda Galaxy , 2008, 0808.3611.

[19]  Thijs van der Hulst,et al.  Cold gas accretion in galaxies , 2008, 0803.0109.

[20]  R. Sutherland,et al.  The Source of Ionization along the Magellanic Stream , 2007, 0711.0247.

[21]  D. York,et al.  Distances to Galactic High-Velocity Clouds. I. Cohen Stream, Complex GCP, Cloud g1 , 2007, 0709.1926.

[22]  F. Fraternali,et al.  The Cold Gaseous Halo of NGC 891 , 2007, 0705.4034.

[23]  C. Flynn,et al.  On the mass-to-light ratio of the local Galactic disc and the optical luminosity of the Galaxy , 2006, astro-ph/0608193.

[24]  J. Sommer-Larsen Where Are the “Missing” Galactic Baryons? , 2006, astro-ph/0602595.

[25]  B. Gibson,et al.  The Galactic Nature of High-Velocity Cloud Complex WB , 2006, astro-ph/0601139.

[26]  M. Mac Low,et al.  Turbulent Structure of a Stratified Supernova-driven Interstellar Medium , 2005, astro-ph/0601005.

[27]  Jeremiah P. Ostriker,et al.  Quantitative Signatures of Galactic Superwinds on Lyα Clouds and Metal-Line Systems , 2005 .

[28]  G. Efstathiou,et al.  Formation of Early-Type Galaxies from Cosmological Initial Conditions , 2005, astro-ph/0512235.

[29]  J. Stadel,et al.  Cooling flows within galactic haloes: the kinematics and properties of infalling multiphase gas , 2005, astro-ph/0507296.

[30]  Joachim Stadel,et al.  Simultaneous ram pressure and tidal stripping; how dwarf spheroidals lost their gas , 2005, astro-ph/0504277.

[31]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[32]  R. Cen,et al.  Signatures of Galactic Superwinds: Inhomogeneous Metal Enrichment of the Lyman Alpha Forest , 2004, astro-ph/0407143.

[33]  J. Bullock,et al.  Multiphase galaxy formation: high-velocity clouds and the missing baryon problem , 2004, astro-ph/0406632.

[34]  D. Thilker,et al.  On the Continuing Formation of the Andromeda Galaxy: Detection of H I Clouds in the M31 Halo , 2003, astro-ph/0311571.

[35]  B. Gibson,et al.  Hα Emission from High-Velocity Clouds and Their Distances , 2003 .

[36]  P. Maloney,et al.  Are Compact High-Velocity Clouds Extragalactic Objects? , 2003, astro-ph/0302040.

[37]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[38]  J. Blades,et al.  Lyα Absorption around Nearby Galaxies , 2002, astro-ph/0208003.

[39]  W. B. Burton,et al.  HIPASS High-Velocity Clouds: Properties of the Compact and Extended Populations , 2001, astro-ph/0110416.

[40]  B. Wakker Distances and Metallicities of High- and Intermediate-Velocity Clouds , 2001, astro-ph/0102147.

[41]  C. Chiappini,et al.  Abundance Gradients and the Formation of the Milky Way , 2001, astro-ph/0102134.

[42]  J. Binney,et al.  The age of the solar neighbourhood , 2000, astro-ph/0003479.

[43]  Greg L. Bryan,et al.  Fluids in the universe: adaptive mesh refinement in cosmology , 1999, Comput. Sci. Eng..

[44]  D. Eisenstein,et al.  HOP: A New Group-finding Algorithm for N-Body Simulations , 1997, astro-ph/9712200.

[45]  Richard I. Klein,et al.  The Jeans Condition: A New Constraint on Spatial Resolution in Simulations of Isothermal Self-Gravitational Hydrodynamics , 1997 .

[46]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[47]  M. Norman,et al.  A Multispecies Model for Hydrogen and Helium Absorbers in Lyman-Alpha Forest Clouds , 1995, astro-ph/9508133.

[48]  B. Savage,et al.  A Sensitive Search for Galactic High-Velocity H i Clouds , 1995 .

[49]  R. Cen,et al.  Background X-Ray Emission from Hot Gas in CDM and CDM+ Lambda Universes: Spectral Signatures , 1995, astro-ph/9506050.

[50]  James M. Gelb,et al.  Formation of Quasars at High Redshift , 1994 .

[51]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – II. Dynamics of the baryonic component in galactic haloes , 1994 .

[52]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – I: Tests of the code , 1993 .

[53]  M. Norman,et al.  ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. II - The magnetohydrodynamic algorithms and tests , 1992 .

[54]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[55]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[56]  D. Abbott,et al.  The return of mass and energy to the interstellar medium by winds from early-type stars , 1982 .

[57]  J. Bregman,et al.  The galactic fountain of high-velocity clouds. , 1980 .

[58]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[59]  P. Shapiro,et al.  Consequences of a New Hot Component of the Interstellar Medium , 1976 .

[60]  M. S. Roberts,et al.  Asymmetry in High-Precision Global H I Profiles of Isolated Spiral Galaxies , 1998 .

[61]  R. McCray,et al.  Heating and Ionization of HI Regions , 1972 .

[62]  R. Larson Infall of Matter in Galaxies , 1972, Nature.

[63]  Submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 ONGOING GALACTIC ACCRETION: SIMULATIONS AND OBSERVATIONS OF CONDENSED GAS IN HOT HALOS , 2022 .