Gene circuit designs for noisy excitable dynamics.

Certain cellular processes take the form of activity pulses that can be interpreted in terms of noise-driven excitable dynamics. Here we present an overview of different gene circuit architectures that exhibit excitable pulses of protein expression, when subject to molecular noise. Different types of excitable dynamics can occur depending on the bifurcation structure leading to the specific excitable phase-space topology. The bifurcation structure is not, however, linked to a particular circuit architecture. Thus a given gene circuit design can sustain different classes of excitable dynamics depending on the system parameters.

[1]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[2]  M. Bennett,et al.  A fast, robust, and tunable synthetic gene oscillator , 2008, Nature.

[3]  Gürol M. Süel,et al.  Biological role of noise encoded in a genetic network motif , 2010, Proceedings of the National Academy of Sciences.

[4]  J A Sherratt,et al.  Dictyostelium discoideum: cellular self-organization in an excitable biological medium , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[5]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[6]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[7]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[8]  Michael A Savageau,et al.  Phenotypes and tolerances in the design space of biochemical systems , 2009, Proceedings of the National Academy of Sciences.

[9]  André Longtin,et al.  Comparison of Coding Capabilities of Type I and Type II Neurons , 2004, Journal of Computational Neuroscience.

[10]  James Sharpe,et al.  An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen gradients , 2010, Molecular systems biology.

[11]  A. Hodgkin The local electric changes associated with repetitive action in a non‐medullated axon , 1948, The Journal of physiology.

[12]  Gürol M. Süel,et al.  An excitable gene regulatory circuit induces transient cellular differentiation , 2006, Nature.

[13]  C. Lim,et al.  Regulated Fluctuations in Nanog Expression Mediate Cell Fate Decisions in Embryonic Stem Cells , 2009, PLoS biology.

[14]  Uri Alon,et al.  Dynamics of the p53-Mdm2 feedback loop in individual cells , 2004, Nature Genetics.

[15]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[16]  Naama Barkai,et al.  Noise Propagation and Signaling Sensitivity in Biological Networks: A Role for Positive Feedback , 2007, PLoS Comput. Biol..

[17]  J. García-Ojalvo,et al.  Effects of noise in excitable systems , 2004 .

[18]  L. Tsimring,et al.  A synchronized quorum of genetic clocks , 2009, Nature.

[19]  Michael B. Elowitz,et al.  Architecture-Dependent Noise Discriminates Functionally Analogous Differentiation Circuits , 2009, Cell.

[20]  Rajan P Kulkarni,et al.  Tunability and Noise Dependence in Differentiation Dynamics , 2007, Science.

[21]  Juan F. Poyatos,et al.  Dynamical Principles of Two-Component Genetic Oscillators , 2006, PLoS Comput. Biol..

[22]  Luhua Lai,et al.  Robustness and modular design of the Drosophila segment polarity network , 2006, Molecular systems biology.