Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.

1. The patterns and synchronization of low-frequency, sleeplike rhythms (slow, spindle and delta oscillations) were compared in the intact-cortex and decorticated hemispheres of cats under ketamine-xylazine anesthesia. Intracellular recordings were performed in intact and decorticated hemispheres from 58 rostrolateral thalamic reticular (RE) neurons and from 164 thalamocortical (TC) neurons in the ventrolateral (VL) nucleus. In the decorticated hemisphere, dual intracellular recordings were performed from five RE-VL cell couples and from 12 TC cell couples within the VL nucleus. In addition, field potentials were simultaneously recorded from the neocortex (electroencephalogram) and ipsilateral thalamus [electrothalamogram (EThG)] of the intact (right) hemisphere, while EThG was recorded from the VL nucleus of the decorticated (left) hemisphere. 2. The slow oscillation (< 1 Hz) was absent in all 72 VL cells and in 23 of 25 RE cells from the decorticated hemisphere, as well as in the EThG recorded from the VL nucleus in the decorticated hemisphere, whereas it was simultaneously present in the cortex and thalamus of the intact hemisphere. The remaining two RE neurons (8%) in the decorticated hemisphere oscillated in close time relation with the slow oscillation in the cortex and thalamus of the opposite hemisphere; averaged activities showed that the onset of depolarization in RE cell followed 12 ms after the sharp depth-negative (depolarizing) component in the contralateral cortex. We view this result as the electrophysiological correlate of a disynaptic excitatory pathway consisting of crossed cortical projections, first relayed in contralateral dorsal thalamic nuclei. 3. The patterns of thalamic spindles (7-14 Hz) differed between the two hemispheres. Whereas the decorticated hemisphere displayed prolonged, waxing and waning spindles, the spindles in the intact-cortex hemisphere were short and exclusively waning and followed the depth-negative component of cortical slow oscillation. This result indicates that the synchronized corticothalamic drive associated with the slow oscillation fully entrains thalamic circuits from the onset of spindles, thus preventing further waxing. Similar differences between waxing and waning and waning spindles were obtained by stimulating with different intensities the thalamus in the decorticated hemisphere. 4. Simultaneous intracellular recordings from two VL cells or from RE and VL cells showed nearly simultaneous spindle sequences in the decorticated hemisphere. 5. The hyperpolarization-activated intrinsic delta oscillation (1-4 Hz) of TC cells was asynchronous in the decorticated hemisphere. 6. These results strengthen the idea that the slow oscillation is cortical in origin; demonstrate a full, short-range, intrathalamic synchrony of spindles in the absence of cortex; and indicate that the pattern of spindles, a sleep rhythm that is conventionally regarded as purely thalamic, is shaped by the corticothalamic feedback.

[1]  R. Morison,et al.  A STUDY OF THALAMO-CORTICAL RELATIONS , 1941 .

[2]  G Oakson,et al.  Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurones. , 1986, The Journal of physiology.

[3]  M Steriade,et al.  Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  M. Deschenes,et al.  Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. , 1985, Journal of neurophysiology.

[5]  M. Steriade,et al.  Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  M. Steriade,et al.  Electrophysiology of a slow (0.5‐4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. , 1992, The Journal of physiology.

[7]  D. Contreras,et al.  Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  M Steriade,et al.  Thalamic projections of nucleus reticularis thalami of cat: A study using retrograde transport of horseradish peroxidase and fluorescent tracers , 1984, The Journal of comparative neurology.

[10]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[11]  P. S. Goldman Contralateral projections to the dorsal thalamus from frontal association cortex in the rhesus monkey , 1979, Brain Research.

[12]  T. Sejnowski,et al.  Control of Spatiotemporal Coherence of a Thalamic Oscillation by Corticothalamic Feedback , 1996, Science.

[13]  D. McCormick,et al.  Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. , 1995, The Journal of physiology.

[14]  R. Morison,et al.  MECHANISM OF THALAMOCORTICAL AUGMENTATION AND REPETITION , 1943 .

[15]  D Contreras,et al.  Mechanisms of long‐lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. , 1996, The Journal of physiology.

[16]  M. J. Friedlander,et al.  Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. , 1981, Journal of neurophysiology.

[17]  E. Rinvik Thalamic commissural connections in the cat , 1984, Neuroscience Letters.

[18]  P S Goldman-Rakic,et al.  Crossed corticothalamic and thalamocortical connections of macaque prefrontal cortex , 1987, The Journal of comparative neurology.

[19]  I. Soltesz,et al.  Low‐frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[20]  D. McCormick,et al.  Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. , 1995, Journal of neurophysiology.

[21]  M. Witter,et al.  Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region , 1989, Progress in Neurobiology.

[22]  D. McCormick,et al.  Cellular mechanisms of a synchronized oscillation in the thalamus. , 1993, Science.

[23]  M. Steriade,et al.  Intrinsic and synaptically generated delta (1–4 Hz) rhythms in dorsal lateral geniculate neurons and their modulation by light-induced fast (30–70 Hz) events , 1992, Neuroscience.

[24]  R. Morison,et al.  ELECTRICAL ACTIVITY OF THE THALAMUS AND BASAL GANGLIA IN DECORTICATE CATS , 1945 .

[25]  M. Steriade,et al.  Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation. , 1995, Journal of neurophysiology.

[26]  S. Andersson,et al.  Physiological basis of the alpha rhythm , 1968 .

[27]  C. Wilson,et al.  Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. , 1994, Journal of neurophysiology.

[28]  D. Paré,et al.  The reticular thalamic nucleus projects to the contralateral dorsal thalamus in macaque monkey , 1993, Neuroscience Letters.

[29]  A. Nuñez,et al.  Unit activity of rat basal forebrain neurons: Relationship to cortical activity , 1996, Neuroscience.

[30]  D. Contreras,et al.  The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  G Mann,et al.  ON THE THALAMUS * , 1905, British medical journal.

[32]  I. Soltesz,et al.  A role for low‐frequency, rhythmic synaptic potentials in the synchronization of cat thalamocortical cells. , 1992, The Journal of physiology.

[33]  M. Steriade,et al.  Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  E. G. Jones,et al.  Thalamic oscillations and signaling , 1990 .

[35]  D. Contreras,et al.  Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. , 1996, The Journal of physiology.

[36]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  M Steriade,et al.  Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  V. Raos,et al.  Crosstalk between the two sides of the thalamus through the reticular nucleus: A retrograde and anterograde tracing study in the rat , 1993, The Journal of comparative neurology.

[39]  I. Soltesz,et al.  Two inward currents and the transformation of low‐frequency oscillations of rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[40]  R. Robertson,et al.  Thalamic connections with limbic cortex. II. Corticothalamic projections , 1981, The Journal of comparative neurology.

[41]  H. Groenewegen,et al.  Connections of the parahippocampal cortex in the cat. II. Subcortical afferents , 1986, The Journal of comparative neurology.

[42]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.