Identification of Nonlinear Lateral Flow Immunoassay State-Space Models via Particle Filter Approach

In this paper, the particle filtering approach is used, together with the kernel smoothing method, to identify the state-space model for the lateral flow immunoassay through available but short time-series measurement. The lateral flow immunoassay model is viewed as a nonlinear dynamic stochastic model consisting of the equations for the biochemical reaction system as well as the measurement output. The renowned extended Kalman filter is chosen as the importance density of the particle filter for the purpose of modeling the nonlinear lateral flow immunoassay. By using the developed particle filter, both the states and parameters of the nonlinear state-space model can be identified simultaneously. The identified model is of fundamental significance for the development of lateral flow immunoassay quantification. It is shown that the proposed particle filtering approach works well for modeling the lateral flow immunoassay.

[1]  Raphael C. Wong,et al.  Lateral flow immunoassay , 2009 .

[2]  Grish C Varshney,et al.  Immunochromatographic dipstick assay format using gold nanoparticles labeled protein-hapten conjugate for the detection of atrazine. , 2007, Environmental science & technology.

[3]  Kristen L. Helton,et al.  Microfluidic Overview of Global Health Issues Microfluidic Diagnostic Technologies for Global Public Health , 2006 .

[4]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[5]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[6]  Shizhi Qian,et al.  Analysis of lateral flow biodetectors: competitive format. , 2004, Analytical biochemistry.

[7]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[8]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[9]  Guy Albert Dumont,et al.  Model-Based Human Circadian Phase Estimation Using a Particle Filter , 2011, IEEE Transactions on Biomedical Engineering.

[10]  Zidong Wang,et al.  Inference of Nonlinear State-Space Models for Sandwich-Type Lateral Flow Immunoassay Using Extended Kalman Filtering , 2011, IEEE Transactions on Biomedical Engineering.

[11]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[12]  Huijie Huang,et al.  Research of reflectance photometer based on optical absorption , 2010 .

[13]  Elaine Martin,et al.  Particle filters for state and parameter estimation in batch processes , 2005 .

[14]  Gregory T. A. Kovacs,et al.  Optical Scanner for Immunoassays With Up-Converting Phosphorescent Labels , 2008, IEEE Transactions on Biomedical Engineering.

[15]  C Dok An,et al.  Evaluation of a rapid qualitative prostate specific antigen assay, the One Step PSA(TM) test. , 2001, Cancer letters.

[16]  Dai-wen Hou,et al.  A Dual Particle Filter for State and Parameter Estimation in Nonlinear System: A Dual Particle Filter for State and Parameter Estimation in Nonlinear System , 2011 .

[17]  Hong Yang,et al.  A sensitive immunochromatographic assay using colloidal gold-antibody probe for rapid detection of pharmaceutical indomethacin in water samples. , 2009, Biosensors & bioelectronics.

[18]  Nicholas G. Polson,et al.  A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .

[19]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[20]  N. G. Best,et al.  Dynamic conditional independence models and Markov chain Monte Carlo methods , 1997 .

[21]  Fuwen Yang,et al.  Stochastic Dynamic Modeling of Short Gene Expression Time-Series Data , 2008, IEEE Transactions on NanoBioscience.

[22]  Zidong Wang,et al.  An Extended Kalman Filtering Approach to Modeling Nonlinear Dynamic Gene Regulatory Networks via Short Gene Expression Time Series , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[23]  Rafik A. Goubran,et al.  Particle Filter Enhancement of Speech Spectral Amplitudes , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[24]  Helene Andersson-Svahn,et al.  A lateral flow protein microarray for rapid determination of contagious bovine pleuropneumonia status in bovine serum. , 2010, Journal of microbiological methods.

[25]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[26]  A. H. Mohamed,et al.  Adaptive Kalman Filtering for INS/GPS , 1999 .

[27]  M. Xiong,et al.  Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks , 2008, PloS one.

[28]  Tatsuro Endo,et al.  A novel enhancement assay for immunochromatographic test strips using gold nanoparticles , 2006, Analytical and bioanalytical chemistry.

[29]  Shizhi Qian,et al.  A mathematical model of lateral flow bioreactions applied to sandwich assays. , 2003, Analytical biochemistry.

[30]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[31]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[32]  Yurong Li,et al.  Study on the Methodology of Quantitative Gold Immunochromatographic Strip Assay , 2010, 2010 2nd International Workshop on Intelligent Systems and Applications.