Proximity effects and nonequilibrium superconductivity in transition-edge sensors

We have recently shown that normal-metal/superconductor (N/S) bilayer superconducting transition-edge sensors (TESs) exhibit weak-link behavior.(1) Here, we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We find that TESs with added Au structures also exhibit weak-link behavior as evidenced by the exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE),(1) the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. Resistance and critical current measurements are presented as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 mu m with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in-plane N-structure separation distance, without appreciable broadening of the transition width. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 x 10(-10) s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition.

[1]  W. Liniger On the proximity effect in a superconductive slab bordered by metal , 1993 .

[2]  I. Beloborodov,et al.  Intrinsic excess noise in a transition edge sensor , 2004 .

[3]  L. Marks,et al.  Spatial variation of the current in grain boundary Josephson junctions , 2000 .

[4]  J. G. Gijsbertsen,et al.  Field dependence of the Josephson current and Fiske resonances in specially shaped Josephson junctions , 1995 .

[5]  T. Klapwijk,et al.  Resistance of superconducting nanowires connected to normal-metal leads , 2004, cond-mat/0401364.

[6]  G. W. Fraser On the nature of the superconducting-to-normal transition in transition edge sensors , 2004 .

[7]  R. Peterson Sidelobe suppression in small Josephson junctions , 1991 .

[8]  J. Clarke,et al.  Measurements of the relaxation of quasiparticle branch imbalance in superconductors , 1974 .

[9]  J. Martinis,et al.  Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations. , 2009, Physical review letters.

[10]  S. Crowder,et al.  Percolation model of excess electrical noise in transition-edge sensors , 2006 .

[11]  Pablo Jarillo-Herrero,et al.  Quantum supercurrent transistors in carbon nanotubes , 2006, Nature.

[12]  S. R. Bandler,et al.  Characterizing the Superconducting-to-Normal Transition in Mo/Au Transition-Edge Sensor Bilayers , 2008 .

[13]  John M. Martinis,et al.  Calculation of Tc in a Normal-Superconductor Bilayer Using the Microscopic-Based Usadel Theory , 2000 .

[14]  R. Glover Ideal resistive transition of a superconductor , 1967 .

[15]  T. Stevenson,et al.  Fabrication of transition edge sensor X-ray microcalorimeters for Constellation-X , 2004 .

[16]  J. Pekola,et al.  Heat transistor: demonstration of gate-controlled electronic refrigeration. , 2007, Physical review letters.

[17]  L. Jackel,et al.  Voltage Measurements within the Nonequilibrium Region near Phase-Slip Centers , 1977 .

[18]  W. B. Doriese,et al.  Large-Area Microcalorimeter Detectors for Ultra-High-Resolution X-Ray and Gamma-Ray Spectroscopy , 2009, IEEE Transactions on Nuclear Science.

[19]  P. Gueret,et al.  Model for a 15ns 16K RAM with Josephson junctions , 1978, 1978 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[20]  A. Kadin,et al.  Charge imbalance waves and nonequilibrium dynamics near a superconducting phase-slip center , 1980 .

[21]  Kent D. Irwin,et al.  Characterization and reduction of unexplained noise in superconducting transition-edge sensors , 2004 .

[22]  J. Pekola,et al.  Fluctuation-limited noise in a superconducting transition-edge sensor. , 2003, Physical review letters.

[23]  J. Mercereau,et al.  Nonequilibrium quasiparticle current at superconducting boundaries , 1975 .

[24]  Probing the Superconducting Proximity Effect in NbSe2 by Scanning Tunneling Microscopy. , 1996, Physical review letters.

[25]  F. Giazotto,et al.  SQUIPT - Superconducting Quantum Interference Proximity Transistor , 2009, 0909.3806.

[26]  M. Tinkham,et al.  Fluctuations near superconducting phase transitions , 1975 .

[27]  J. Cuevas,et al.  Magnetic interference patterns and vortices in diffusive SNS junctions. , 2007, Physical review letters.

[28]  S. R. Bandler,et al.  Performance of TES X-ray Microcalorimeters with a Novel Absorber Design , 2008 .

[29]  K. Maki The Critical Fluctuation of the Order Parameter in Type-II Superconductors , 1968 .

[30]  M. Carmody,et al.  Determination of the current density distribution in Josephson junctions , 1999 .

[31]  D. Estève,et al.  Phase controlled superconducting proximity effect probed by tunneling spectroscopy. , 2008, Physical review letters.

[32]  R. F. Broom,et al.  Modeling of Characteristics for Josephson Junctions Having Nonuniform Width or Josephson Current Density , 1980, IBM J. Res. Dev..

[33]  B. Pannetier,et al.  STM spectroscopy of the local density of states in hybrid normal metal–superconductor bilayers , 2004 .

[34]  A. I. Buzdin Proximity effects in superconductor-ferromagnet heterostructures , 2005 .

[35]  G. Schön,et al.  Linearized kinetic equations and relaxation processes of a superconductor near Tc , 1975 .

[36]  S. Smith,et al.  Longitudinal proximity effects in superconducting transition-edge sensors. , 2009, Physical review letters.

[37]  R. S. Withers,et al.  A superconducting analog track-and-hold circuit , 1988 .

[38]  J. Pekola,et al.  Recombination-limited energy relaxation in a Bardeen-Cooper-Schrieffer superconductor. , 2008, Physical review letters.

[39]  Richard E. Harris,et al.  Quasiparticle heterodyne mixing in SIS tunnel junctions , 1978 .