On Frobenius algebras in rigid monoidal categories

We show that the equivalence between several possible characterizations of Frobenius algebras, and of symmetric Frobenius algebras, carries over from the category of vector spaces to more general monoidal categories. For Frobenius algebras, the appropriate setting is the one of rigid monoidal categories, and for symmetric Frobenius algebras it is the one of sovereign monoidal categories. We also discuss some properties of Nakayama automorphisms.

[1]  Ross Street,et al.  Frobenius monads and pseudomonoids , 2004 .

[2]  K(N)-local duality for finite groups and groupoids , 2000, math/0011109.

[3]  J. Fuchs,et al.  On the Rosenberg-Zelinsky sequence in abelian monoidal categories , 2007, 0801.0157.

[4]  On fusion categories , 2002, math/0203060.

[5]  Charles StreetBaltimore,et al.  TWO-DIMENSIONAL TOPOLOGICAL QUANTUM FIELD THEORIES AND FROBENIUS ALGEBRAS , 1996 .

[6]  J. Fuchs,et al.  Correspondences of ribbon categories , 2003 .

[7]  C. Schweigert,et al.  TFT construction of RCFT correlators: III: simple currents , 2004, hep-th/0403157.

[8]  Subfactor Realisation of Modular Invariants , 2003, math/0309174.

[9]  J. Fuchs,et al.  Conformal correlation functions, Frobenius algebras and triangulations , 2002 .

[10]  C. Curtis,et al.  Representation theory of finite groups and associated algebras , 1962 .

[11]  V. Ostrik,et al.  On q analog of McKay correspondence and ADE classification of affine sl(2) conformal field theories , 2001 .

[12]  D. Chataur,et al.  String topology of classifying spaces , 2007, 0801.0174.

[13]  L. Kadison New Examples of Frobenius Extensions , 1999 .

[14]  Ross Street,et al.  Militaru's D-Equation in Monoidal Categories , 2003, Appl. Categorical Struct..

[15]  Yinhuo Zhang,et al.  The Brauer group of a braided monoidal category , 1998 .

[16]  Frobenius algebras and planar open string topological field theories , 2005, math/0508349.

[17]  A theory of dimension , 1996, funct-an/9604008.

[18]  F. William Lawvere,et al.  Ordinal sums and equational doctrines , 1969 .

[19]  C. Schweigert,et al.  Category theory for conformal boundary conditions , 2001, math/0106050.

[20]  From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories , 2001, math/0111204.

[21]  F. Quinn,et al.  Lectures on axiomatic topological quantum field theory , 1991 .

[22]  Lowell Abrams TWO-DIMENSIONAL TOPOLOGICAL QUANTUM FIELD THEORIES AND FROBENIUS ALGEBRAS , 1996 .

[23]  Ribbon categories and (unoriented) CFT: Frobenius algebras, automorphisms, reversions , 2005, math/0511590.

[24]  J. Fuchs,et al.  Categorification and correlation functions in conformal field theory , 2006, math/0602079.

[25]  M. Müger Conformal Orbifold Theories and Braided Crossed G-Categories , 2004, math/0403322.

[26]  T. Kerler On braided tensor categories , 1994, hep-th/9402018.

[27]  Tsit Yuen Lam,et al.  Lectures on modules and rings , 1998 .

[28]  S. Majid Foundations of Quantum Group Theory , 1995 .

[29]  H. Pfeiffer Tannaka–Kreıˇn reconstruction and a characterization of modular tensor categories , 2007, 0711.1402.

[30]  TFT construction of RCFT correlators V: Proof of modular invariance and factorisation , 2005, hep-th/0503194.

[31]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[32]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[33]  J. Fuchs The graphical calculus for ribbon categories: Algebras, modules, Nakayama automorphisms , 2006 .