Metric Semantics and Full Abstractness for Action Refinement and Probabilistic Choice

This paper provides a case-study in the field of metric semantics for probabilistic programming. Both an operational and a denotational semantics are presented for an abstract process language L_pr, which features action refinement and probabilistic choice. The two models are constructed in the setting of complete ultrametric spaces, here based on probability measures of compact support over sequences of actions. It is shown that the standard toolkit for metric semantics works well in the probabilistic context of L_pr, e.g. in establishing the correctness of the denotational semantics with respect to the operational one. In addition, it is shown how the method of proving full abstraction --as proposed recently by the authors for a nondeterministic language with action refinement-- can be adapted to deal with the probabilistic language L_pr as well.

[1]  Luca Aceto,et al.  Towards Action-Refinement in Process Algebras , 1993, Inf. Comput..

[2]  Walter Vogler Failures Semantics Based on Interval Semiwords is a Congruence for Refinement , 1990, STACS.

[3]  Erik P. de Vink,et al.  Full Abstractness of a Metric Semantics for Action Refinement , 1999, Fundam. Informaticae.

[4]  James Worrell,et al.  Towards Quantitative Verification of Probabilistic Transition Systems , 2001, ICALP.

[5]  Ivan Christoff,et al.  Testing Equivalences and Fully Abstract Models for Probabilistic Processes , 1990, CONCUR.

[6]  Walter Vogler,et al.  Modular Construction and Partial Order Semantics of Petri Nets , 1992, Lecture Notes in Computer Science.

[7]  Dieter Hogrefe,et al.  Formal Description Techniques VII , 1995, IFIP Advances in Information and Communication Technology.

[8]  Arend Rensink,et al.  Comparing Syntactic and Semantic Sction Refinement , 1996, Inf. Comput..

[9]  den Ji Jerry Hartog Comparative semantics for a process language with probabilistic choice and non-determinism , 1998 .

[10]  Marta Z. Kwiatkowska,et al.  A Fully Abstract Metric-Space Denotational Semantics for Reactive Probabilistic Processes , 1997, COMPROX.

[11]  Joseph E. Stoy,et al.  Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory , 1981 .

[12]  Kim S. Larsen,et al.  Fully abstract models for a process language with refinement , 1988, REX Workshop.

[13]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[14]  Erik P. de Vink,et al.  Control flow semantics , 1996 .

[15]  Djamel-Eddine Saïdouni,et al.  Relating maximality-based semantics to action refinement in process algebras , 1994, FORTE.

[16]  Arend Rensink Models and Methods for Action Refinement , 1993 .

[17]  Erik P. de Vink,et al.  Mixing Up Nondeterminism and Probability: a preliminary report , 1998, PROBMIV.

[18]  E. P. de Vink,et al.  Taking chances on MERGE and FAIL: Extending strong and probabilistic bisimulation , 1999 .

[19]  Philippe Darondeau,et al.  Refinement of Actions in Event Structures and Causal Trees , 1993, Theor. Comput. Sci..

[20]  Jan J. M. M. Rutten,et al.  Initial Algebra and Final Coalgebra Semantics for Concurrency , 1993, REX School/Symposium.

[21]  Roberto Gorrieri,et al.  A Causal Operational Semantics of Action Refinement , 1995, Inf. Comput..

[22]  Erik P. de Vink,et al.  Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach , 1997, Theor. Comput. Sci..

[23]  Karen Seidel,et al.  Probabilistic Communicating Processes , 1992, Theor. Comput. Sci..

[24]  Erik P. de Vink,et al.  Bisimulation Semantics for Concurrency with Atomicity and Action Refinement , 1994, Fundam. Informaticae.

[25]  Michael W. Mislove Nondeterminism and Probabilistic Choice: Obeying the Laws , 2000, CONCUR.

[26]  L. Aceto Action refinement in process algebras , 1992 .

[27]  Marta Z. Kwiatkowska,et al.  Probabilistic Metric Semantics for a Simple Language with Recursion , 1996, MFCS.

[28]  Manuel Núñez,et al.  Acceptance Trees for Probabilistic Processes , 1995, CONCUR.

[29]  Erik P. de Vink,et al.  Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach , 1999, Theor. Comput. Sci..

[30]  Manuel Núñez,et al.  Denotational Semantics for Probabilistic Refusal Testing , 1998, PROBMIV.

[31]  Bernhard Steffen,et al.  Reactive, Generative and Stratified Models of Probabilistic Processes , 1995, Inf. Comput..

[32]  Philippe Darondeau,et al.  Causal Trees , 1989, ICALP.